Acknowledgement
Supported by : Dankook University
References
- R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485-488. https://doi.org/10.1215/S0012-7094-45-01243-9
-
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to
$L_2$ over the space C, Duke Math. J. 14 (1947), 99-107. https://doi.org/10.1215/S0012-7094-47-01409-9 - S. J. Chang, H. S. Chung, and D. Skoug, Some basic relationships among transforms, convolution products, first variations and inverse transforms, Cent. Eur. J. Math. 11 (2013), no. 3, 538-551. https://doi.org/10.2478/s11533-012-0148-x
- J. G. Choi and S. J. Chang, A rotation on Wiener space with applications, ISRN Appl. Math. 2012 (2012), Art. ID 578174, 13 pages.
- H. S. Chung, J. G. Choi, and S. J. Chang, Conditional integral transforms with related topics on function space, Filomat 26 (2012), no. 6, 1151-1162. https://doi.org/10.2298/FIL1206151C
- D. M. Chung, C. Park, and D. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), no. 2, 337-391. https://doi.org/10.1307/mmj/1029004758
- H. S. Chung, D. Skoug, and S. J. Chang, Relationships involving transform and convolutions via the translation theorem, Stoch. Anal. Appl. 32 (2014), no. 2, 348-363. https://doi.org/10.1080/07362994.2013.877350
- H. S. Chung and V. K. Tuan, Generalized integral transforms and convolution products on function space, Integral Transforms Spec. Funct. 22 (2011), no. 8, 573-586. https://doi.org/10.1080/10652469.2010.535798
- D. L. Cohn, Measure Theory, Birkhauser-Verlag, Boston, 1980.
- G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157-176. https://doi.org/10.2140/pjm.1979.83.157
- B. J. Kim, Conditional integral transforms, conditional convolution products and first variations for some conditioning functions, Far East J. Math. Sci. 19 (2005), no. 3, 245-258.
- B. S. Kim, B. J. Kim, and D. Skoug, Conditional integral transforms, conditional convolution products and first variations, Panamer. Amer. Math. J. 14 (2004), no. 3, 27-47.
-
B. S. Kim and D. Skoug, Integral transforms of functionals in
$L_2(C_0$ [0, T]), Rocky Mountain J. Math. 33 (2003), no. 4, 1379-1393. https://doi.org/10.1216/rmjm/1181075469 -
I. Y. Lee, H. S. Chung, and S. J. Chang, Relationships among the transform with respect to the Gaussian process, the
${\diamond}$ -product and the first variation of functionals on function space, to submitted for publications. - C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), no. 2, 381-394. https://doi.org/10.2140/pjm.1988.135.381
- W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
Cited by
- Series expansions of the transform with respect to the Gaussian process vol.26, pp.4, 2015, https://doi.org/10.1080/10652469.2014.991920
- Generalized conditional transform with respect to the Gaussian process on function space vol.26, pp.12, 2015, https://doi.org/10.1080/10652469.2015.1070149