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Abstract
Leaf area (A0) and leaf biomass (M0) estimation are significant prerequisites to studying tree physiological processes 
and modeling in the forest ecosystem. The objective of this study was to develop allometric models for estimating 
A0 and M0 of Swietenia mahagoni L. from different tree parameters such as DBH and tree height of mahogany plantations 
in the northeastern region of Bangladesh. A total of 850 healthy and well formed trees were selected randomly for 
sampling in the five study sites. Then, twenty two models were developed based on different statistical criteria that 
propose reliable and accurate models for estimating the A0 and M0 using non-destructive measurements. The results 
exposed that model iv and xv were selected on a single predictor of DBH and showed more statistically accuracy than 
other models. The selected models were also validated with an additional test data set on the basis of linear regression 
and t-test for mean difference between observed and predicted values. After that, a comparison between the best logarithmic 
and non-linear allometric model shows that the non-linear model produces systematic biases and underestimates A0

and M0 for larger trees. As a result, it showed that the bias-corrected logarithmic model iv and xv can be used to 
help quantify forest structure and functions, particularly valuable in future research for estimating A0 and M0 of S. 
mahagoni in this region.
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Introduction

The leaf area (A0) of individual trees and of forests is bio-
logical factor that determines the light interception and the 
efficiency of the photosynthetic and transpiration rate 
(Pereira et al. 1997) and also valuable for gap models and 
individual tree growth models (Peter et al. 2010). Leaf area 
is defined as the surface area available for the interception of 
radiant energy, the absorption of carbon dioxide, and the 
circulation of water between the foliage and the atmosphere 
(Margolis et al. 1995) and the plant leaf area is crucial for 

the evaluation and understanding of the vegetative growth 
and water loss from the plant. Canopy leaf biomass is the 
product of the leaf dry matter content and leaf area index 
(Tobin et al. 2006) and it constitutes one of the most im-
portant pools of essential nutrients, which is vital for forest 
nutrient cycling including carbon cycling. Leaf biomass 
(M0) estimates were significantly improved when addi-
tional biometric information relating to crown structure was 
added (Tobin et al. 2006).

Both A0 and M0 estimations aid evaluation of plant per-
formance at the individual, community and even ecosystem 
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level (Meier and Leuschner 2008). Moreover, a number of 
studies ranging from insect-forest interactions (Paine et al. 
1990), light competition (Waring 1983), and direct manip-
ulative studies focused on A0 response to thinning and fer-
tilization (Vose and Allen 1988; Velazquez-Martinez et al. 
1992) have used A0 estimates. Inter-specific variation in A0 
is connected with climatic variation, geology, altitude or lat-
itude whereas this variation can also be linked to allometric 
factors (plant size, twig size, anatomy and architecture) and 
ecological strategy (Cornelissen et al. 2003). A0 measure-
ments have become major tools for forest ecosystem and sil-
vicultural studies over the last few decades. 

Total A0 and M0 of trees have been measured by either 
destructive (direct) (Calvo-Alvarado et al. 2008; Peter et al. 
2010) or nondestructive (indirect) (Norman and Campbell 
1989; Sarker et al. 2013; Das 2014) methods. Measure-
ment of the destructive method is very time consuming, la-
bour intensive, eco-unfriendly and depends on very small 
samples. But, nondestructive methods were found user 
friendly, less expensive, and can give accurate A1 and B1 es-
timates (Waring 1983; Norman and Campbell 1989; Paine 
et al. 1990; Sarker et al. 2013; Das 2014). For the estima-
tion of allometric models are particularly in statistical shape 
analysis for its theoretical developments (Zianis 2005) and 
it is unquestionable that researchers have produced a volu-
minous amount of allometric relationships for several spe-
cies and tree components (Calvo-Alvarado et al. 2008; 
Peter et al. 2010). To quantify the A0 and M0 of individual 
trees with DBH (diameter at breast height) of allometric 
relationship have been widely used (Gajardo-Caviedes et al. 
2005). Generally, allometric models are developed by fitting 
a linear relationship between log-transformed diameter and 
leaf data. 

Tree species of Swietenia mahagoni L. is largely planted 
on barren forest lands and roadsides in connection with the 
agroforestry and social forestry programs in Bangladesh 
(Das and Alam 2001). A substantial portion of the total af-
forested area (11%) is located in the north-eastern region of 
Bangladesh. Though there is no scientific record yet, my 
experience is that S. mahagoni covers a considerable portion 
of the forest cover of this region. It has great potential for 
reforestation and afforestation, particularly for improving 
soil and environmental conditions. In this study, I evaluate 
several models based on different statistical criteria that 

propose reliable and accurate models for estimating the A0 
and M0 using non-destructive measurements. Thus, the 
objective of this study was to develop allometric models for 
estimating A0 and M0 of S. mahagoni from different tree pa-
rameters such as DBH and tree height of mahogany plan-
tations in the north-eastern region of Bangladesh.

Materials and Methods

Site description

The research was conducted on the five sites of Sylhet 
Forest division, named Kamalganj, Rajkandi, Kulaura, Juri 
and Barlekha, which are in the Moulovibazar District of 
north-eastern Bangladesh (Fig. 1). The area lies between 
24.11 and 24.42o N and between 91.45 and 92.15o E. This 
district is located in the semi-evergreen hill forest zone and 
the characteristic vegetation comprises deciduous to 
semi-evergreen species in natural forest patches with a 
closed canopy. The average annual rainfall is 4150 mm and 
the relative humidity is about 72 percent during December 
and over 92 percent during July-August. Forests in this 
area occupy gentle to very steep slopes. Soils have devel-
oped over consolidated or unconsolidated bedrocks, and are 
imperfect to excessively drain. Generally, the subsoil is yel-
low to strong brown, friable, porous, sandy loam to sandy or 
silty clay loam, and strongly to extremely acidic (Banglape-
dia 2003).

Species description

Swietenia mahagoni (L.) is a tall tree, up to 30 m high, 
with a short, buttressing base, up to 1 m in diameter and a 
large, spherical crown, many heavy branches and dense 
shade. The tree is deciduous in areas where it is subject to 
drought. Its leaves even, pinnate, 10-18 cm long, and bear-
ing 4-10 pairs of leaflets that are shiny, dark green, 
lance-shaped, 2.5-5 cm long by 0.7-2 cm broad (Das and 
Alam 2001). S. mahagoni is suitable for large-scale timber 
production plantations because of its excellent timber 
quality. The wood can be used for construction materials, 
plywood (veneer), high-grade furniture and cabinet 
making. It grows naturally in tropical America and it has 
been extensively planted mainly in Southern Asia and the 
Pacific including India, Bangladesh, Indonesia, Philip-
pines and Sri Lanka (Soerianegara and Lemmens 1993).



Niamjit Das

J For Env Sci 30(4), 351-361     353

Fig. 1. Map of the Study site.

Table 1. Descriptive statistics for the different variables of S. mahagoni

Variables Mean Maximum Minimum SD Skewness Kurtosis

DBH (cm)
Height (m)
Validation DBH (cm)
Validation Height (m)
Individual leaf area (cm2)
Individual dry leaf biomass (g)

26.625
10.190
23.731
  9.890
25.517
  0.492

53.10
18.86
51.40
17.25
34.37

    0.782

10.09
  4.97
11.24
  5.02
10.36
  0.21

10.070
  3.069
13.173
  2.192
  3.614
  0.282

0.181
0.742
0.185
0.683
0.238
0.116

-0.733
-0.433
-0.750
-0.427
  0.217
  0.105

Field measurements

A total of 850 healthy and well formed S. mahagoni trees 
were selected randomly for sampling. Data on tree height 
and DBH (Table 1) were measured by Sunnto Clinometers 
and Tree Calipers. The leaves were collected by using the 
protocols of Cornelissen et al. (2003). But, because of mor-
atorium on felling in the forests (Sarker et al. 2011), the leaf 
data was collected manually (climbing on tree). To retain 
high data accuracy, I used stratified random sampling in 
calculating leaf number of individual trees. The method is 
equally suitable to estimate A0 where randomly sub-sam-

pled branches are used to calculate whole-tree A0 based on 
the relative importance of the branches (Peter et al. 2010; 
Das 2014). I maintained the following steps to count the 
leaves of each sampled trees: (I) diameter of all the main 
branches were measured, (II) main branch’s diameter near 
to mean diameter was selected as model main branch 
(MMB), (III) sub-branches of all the main branches were 
counted, (IV) three sub-branches were selected randomly 
from the MMB, (V) twigs of each sub-branch were count-
ed and mean twigs number/sub-branch was calculated, 
(VI) thee twigs were selected randomly from each selected 
sub-branch, (VII) average leaves/twig was calculated, 
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Fig. 2. Diameter at breast height (DBH; cm) and tree height (m) dis-
tributions of the model fitting data set.

(VIII) leaf number/sub-branch was calculated by multi-
plying mean twigs number/sub-branch and mean leaf num-
bers/twig and (IX) total leaf number of a tree was calculated 
by multiplying total sub-branches and estimated leaf num-
ber/sub-branch (Sarker et al. 2013; Das 2014). The leaves 
were categorized into small, medium and large size and five 
leaves of each category were collected randomly from 
sub-branches. In total, fifteen leaf samples were collected 
from each tree and packed in a plastic bag. After that, data 
of DBH, tree height, leaf samples and total leaf number per 
tree from an additional 200 trees were collected and used as 
a test data set for validating the models. Leaf area of each 
sample leaf (Table 1) was measured by leaf area meter 
(CI-202, CID, Inc., Vancouver, Washington, USA) and 
the fresh mass of each leaf was measured with a digital bal-
ance meter. Thickness of each sample leaf was estimated 
with digital caliper (Absolute Digimatic CD-6″ CS, 
Mitutoyo Corporation, Kanagawa, Japan). Measured lea-
ves were oven dried at 65oC for 72 hours and weighted to 
determine fresh mass: dry mass ratios. The projected leaf 
area for each sample tree (A0, m

2) was calculated by multi-
plying average A0 and total leaf number. Total leaf vol-
ume/tree was estimated by multiplying total A0 and leaf 
thickness. Leaf density was measured by dividing the aver-
age leaf fresh mass by leaf volume of the fifteen sampled 
leaves per tree. Total leaf biomass per tree was estimated by 
multiplying the total leaf volume and leaf density (Sarker et 
al. 2013; Das 2014).

Model development and validation

From Fig. 2, it was clear that both DBH and tree height 
of the model data set were not normally distributed (for 
DBH: Shapiro-Wilk p=5.536e-06; for tree height p= 
3.491e-05 at α=0.05). For estimation of A0 and M0 of S. 
mahagoni, I tested of four regression models (linear, power, 
exponential and quadratic). Total twenty two models were 
developed using DBH and height for the best allometric 
relationship between the response and predictors (Table 2). 
Diagnostic residual plots were used to check five statistical 
assumptions (Robinson and Hamann 2011), such as I) the 
models detain a relationship, II) errors have constant var-
iance, III) errors are normally distributed, IV) sample rep-
resents the population and V) error terms are independent. 
The developed models were evaluated by examining root 

mean squared error (RMSE), goodness of fit (R2), Akaike 
information criterion (AIC), Bayesian information criterion 
(BIC) and average deviation (%). The Durbin-Watson test 
for autocorrelation was used to check the autocorrelation. 
Due to the presence of heteroscedasticity, I transformed the 
data for linear regression using natural logarithm and this 
transformation induced a systematic bias in the estimation 
which was corrected using a correction factor (CF) when 
back transforming the calculation into A0 and M0 (Son et al. 
2001; Sah et al. 2004; Chave et al. 2005). Thus, the correc-
tion factor (CF) is calculated according to the usual for-
mula (Sprugel 1983):
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Table 2. Different models used in this study

Model no. Allometric models

i
ii
iii
iv
v
vi
vii
viii
ix
x
xi
xii
xiii
xiv
xv
xvi
xvii
xviii
xix
xx
xxi
xxii

LA=a+b*DBH
LA=a+b*H
LA=a+b*DBH+c*H
lnLA=a+b*lnDBH
lnLA=a+b*lnH
lnLA=a+b*lnDBH+c*lnH
lnLA=a+b*DBH
lnLA=a+b*H
lnLA=a+b*DBH+c*H
lnLA=a+b*DBH+c*DBH2

lnLA=a+b*H+c*H2

FB=a+b*DBH
FB=a+b*H
FB=a+b*DBH+c*H
lnFB=a+b*lnDBH
lnFB=a+b*lnH
lnFB=a+b*lnDBH+c*lnH
lnFB=a+b*DBH
lnFB=a+b*H
lnFB=a+b*DBH+c*H
lnFB=a+b*DBH+c*DBH2

lnFB=a+b*H+c*H2

  


where SEE=standard error of the estimate. The average 
deviation was computed from the absolute difference be-
tween predicted and observed values and expressed as the 
percentage of observed values, and then all deviations were 
averaged (Cairns et al. 2003; Chave et al. 2005). The aver-
age deviation (δB) is calculated as follows: 



  

 Ď 

where ĎW=estimated, DW=observed and n=number 
of observations. It was calculated after the prediction was 
back-transformed to the unit values and corrected using a 
CF. This model was then compared with the relevant loga-
rithmic model with bias correction.

I used R statistical software version 3 (R Development 
Core Team 2013) for data analysis. I regressed the observed 
A0 and M0 of the test data from an additional test data set (n 
= 200) against the predicted A0 and M0 uses linear re-

gression for validating the models. Then, I compared the 
mean difference between the observed and predicted A0 and 
M0 using a t-test. In addition, I developed best fit non-line-
ar regression model for estimating A0 and M0 and these 
models were then compared to the bias corrected loga-
rithmic models.

Results 

Model development and evaluation

From the development of twenty two models, the best 
ones were determined according to the selection criteria de-
scribed in materials and methods and the A0 and M0 were 
best estimated using models iv and xv, respectively (Table 
3). For both parameters, the goodness of fit adjusted (R2) of 
regressions was highly significant while using the DBH as 
a predictor and explained more than 93% variation. To 
compare the models, the AIC and BIC values for models iv 
and xv were lower than that of other tested models indicat-
ing the statistical robustness of the selected models (iv and 
xv) and the RMSE values were also lower for the selected 
models (Table 3). Among the tested models, model iv and 
xv had the lowest average deviations (17.304 and 20.447%, 
respectively).

To check these statistical assumptions, for first assump-
tion, I plotted regression residuals versus fitted values for 
the models in order to check whether the linear model cap-
tures the relationship. In this scatter plot, I noted that the 
residual scatter plot had the slight heteroscedastic behavior 
of the selected models (Figs. 3A, 4A). After that, I also 
plotted the normal Q-Q plot of the standardized residuals 
against the normal distribution line and the errors showing 
slight departure from the line (Figs. 3B, 4B) that have con-
stant variance (assumption II) and were normally dis-
tributed (assumption III). In addition, to check assumption 
II, I plotted the square root of the absolute residuals against 
the fitted values (Figs. 3C, 4C), and the figures show no de-
viations from the horizontal line. However, such kind of de-
viations from the horizontal line is often acceptable as de-
scribed in large sample theory (Robinson and Hamann 
2011). The leverage of the observations against the stand-
ardized residuals showed that the Cook’s distance was less 
than 1 in both cases (Figs. 3D, 4D). This indicates that the 
adequacy of the sample as a representative of the population 
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Table 3. Estimated parameters of the different models tested for predicting A0 and M0 of S. mahagoni 

Model
Estimated Coefficients

RMSE F R2 Adjusted
R2 AIC BIC CF AD

Durb in 
Watsona b c

i
ii
iii
iv
v
vi
vii
viii
ix
x
xi
xii
xiii
xiv
xv
xvi
xvii
xviii
xix
xx
xxi
xxii

  -83.3269***
-105.352**
  -80.5471***
    -2.96749***
    -2.12996**
    -3.07579***
     1.681304***
     1.17847***
     1.507932***
     0.4893***
    -3.75163***
    -7.20572***
    -9.29298**
    -7.09026***
    -5.22514***
    -4.42117***
    -5.34700***
    -0.64179***
    -1.14913**
    -0.82855***
    -1.90365***
    -6.22750***

  7.10880***
24.978**
  7.2174***
  2.28677***
  3.12390***
  2.20725***
  0.102639***
  0.38620***
  0.095863***
  0.2127***
  1.681444***
  0.636409***
  2.25213**
  0.64092***
  2.25004***
  3.08403***
  2.16057***
  0.100578***
  0.38047**
  0.093279***
  0.217069***
  1.714661***

 
 
-0.7196
 
 
 0.17899**
 
 
 0.0448***
-0.002***
-0.081***
 
 
-0.02989
 
 
 0.20141**
 
 
 0.0483***
-0.002***
-0.082***

20.112
45.311
20.117

    0.2096
    0.5790
    0.2099
    0.3041
    0.6169
    0.2999
    0.2246
    0.5522
    2.0460
    4.1451
    2.0471
    0.2430
    0.5813
    0.2455
    0.3343
    0.6196
    0.3298
    0.2542
    0.5511

   5,924
     611
  2,963
12,140
    988

   6,154
  5,400
    788

  2,788
  5,243
    578

  4,588
    593

   2,291
  8,740
    955

  4,429
   4,291

    758
   2,214
   3,964
     571

0.8953
0.4687
0.8955
0.9460
0.5878
0.9428
0.8863
0.5321
0.8896
0.9381
0.6256
0.8688
0.4613
0.8688
0.9365
0.5796
0.9275
0.8610
0.5224
0.8649
0.9197
0.6228

0.8951
0.4679
0.8951
0.9459
0.5872
0.9426
0.8861
0.5314
0.8893
0.9379
0.6245
0.8686
0.4606
0.8684
0.9364
0.5790
0.9273
0.8608
0.5217
0.8645
0.9195
0.6217

6,144.42
7,269.56
6,145.83
-192.58

1,211.27
-190.63
  317.79

1,297.46
  298.94
   -95.25
1,145.10
2,968.41
3,947.66
2,966.38
      9.42

1,214.47
    10.49
  451.24

1,305.73
  431.82
    72.55

1,141.89

6,161.74
7,290.38
6,167.09
 -182.06
1,230.29
 -180.71
  335.44

1,318.47
  321.38
  -80.68

1,170.02
2,985.02
3,966.41
2,991.36
    23.61

1,235.95
    25.56
  466.98

1,324.61
  453.74
    91.84

1,167.11

-
-
-

1.0222
1.1824
1.0229
1.0473
1.2095
1.0459
1.0255
1.1646

-
-
-

1.0299
1.1840
1.0305
1.0574
1.2116
1.0558
1.0328
1.1639

    40.246
135.15

    42.368
    17.304
    64.803
    18.990
    19.682
    56.238
    18.027
    30.912
    84.165
    35.682

122.29
    38.431
    20.447
    64.988
    20.982
    21.994
    45.681
    23.627
    37.416
    98.243

1.036
1.494
1.073
1.957
2.113
1.904
0.960
1.867
0.969
1.726
2.250
1.465
1.585
1.478
2.014
2.105
1.965
1.103
1.858
1.112
1.850
2.268

*p＜0.01, **p＜0.001, ***p＜0.0001.
AD=Average deviation (%), CF= Correction factor.

(assumption IV). The basic diagnostic plot cannot check 
assumption V because it doesn’t have the option to check 
the independence of the error terms. To check this assump-
tion, the Durbin-Watson test for autocorrelation among the 
residuals showed that the selected models were 1.957 and 
2.014 for A0 and M0, respectively and nearly lies within the 
range of the acceptable limit of 2. In this context, the model 
coefficients cannot be reliably used unless the correction 
factor is applied to remove the heteroscedasticity. Correc-
tion factors showed a rather narrow variation for both cases 
(Table 3). 

Therefore, the final model of A0 is, A0=exp (-2.96749+ 
2.28677xln (DBH)), which can be written as A0= 
0.051432x(DBH)2.28677. The bias corrected model is, A0 
=0.051432x(DBH)2.28677x1.0222, and the final form of 
this model is A0=0.052574x(DBH)2.28677. 

The final model of leaf biomass is, M0=exp (-5.22514 
+2.25004xln (DBH)), and can be written as M0= 
0.00538x(DBH)2.25004. The bias corrected model is, M0 
=0.00538x(DBH)2.25004x1.0299, which finally formed as 

M0=0.00554x(DBH)2.25004. 

Model performance estimation

In the model validation, the goodness of fit (R2) showed 
that there was a highly reliable relationship between esti-
mated and observed data for both cases (A0 and M0). The 
R2 between them for models using A0 and M0 was 0.982 
and 0.965, respectively (Fig. 5). At 95% CI, the mean of 
the observed and the proposed models predicted data were 
not significantly different (p=0.998 for A0 and p=0.993 
for M0) and there is a high probability that estimated values 
are closest to the observed values (Table 4). The predicted 
A0 and M0 using model iv and xv produced the same trend 
as the observed data (Fig. 6). In addition, I compared the 
best fitted nonlinear and the bias corrected logarithmic 
models (Table 5). The adjusted R2, AIC and BIC values of 
the non-linear allometric model were 0.944, 5531.527 and 
5558.043 for A0, 0.924, 2693.836 and 2715.838 for M0, 
respectively. On the other hand, for the logarithmic model 
those were 0.9459, -192.58 and -182.06 for A0, 0.9364, 
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Fig. 3. Diagnostic plots for model 
iv.

Fig. 4. Diagnostic plots for model 
xv.
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Fig. 6. Predicted leaf area (A) and 
leaf biomass (B) against diameter 
at breast height (DBH) using 
model iv and xv with observed da-
ta at 95% confidence intervals 
(CI).

Fig. 5. Linear regression between 
observed and predicted leaf area 
(A); between observed and pre-
dicted leaf biomass (B).

Table 4. The confidence interval (CI) of the mean A0 (m
2) and M0 (kg) for observed and best fit model data, and paired t-test for this species

Parameters Observed Model SEE t-test Significance

 
A0

 
 

M0

 

Mean
95% CI Lower limit
95% CI Upper limit
Mean
95% CI Lower limit
95% CI Upper limit

75.285
70.660
79.910
  6.993
  6.573
  7.414

76.797
71.940
81.654
  7.164
  6.719
  7.609

0.526
 
 

0.068
 
 

-2.872
 
 

-2.480
 
 

0.998
 
 

0.993
 
 

9.42 and 23.61 for M0. Despite of similar R2 values, the 
AIC and BIC values were lower for logarithmic models in 
both cases. Moreover, nonlinear allometric models showed 
a propensity of underestimation of A0 and M0 with an in-
crease of DBH (Fig. 7).

Discussion

The selected logarithmic models (iv and xv) were pro-

posed according to slight heteroscedastic residual scatter, 
lower RMSE, AIC, BIC value and average deviation for 
estimation of A0 and M0. Though, logarithmic trans-
formation induces a systematic bias in the estimation, which 
was corrected using a CF in the final model (Son et al. 
2001; Sah et al. 2004; Chave et al. 2005). Consequently, the 
bias-corrected final allometric models produced a range of 
prediction values closer to the upper and lower limits of the 
observed mean values. These models accounted for more 
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Table 5. Estimated parameters for the best fit nonlinear model iv of A0 and model xv of M0

Parameters Estimate Std. Error t-value p-value

A0

M0

Intercept
Power
Intercept
Power

0.074941
2.174058
0.010102
2.062322

0.00494
0.01881
0.00092
0.02625

  15.14
115.55
  10.90
  78.54

＜2e-16***
＜2e-16***
＜2e-16***
＜2e-16***

***Significant at α=0.00.

Fig. 7. Best fit logarithmic and 
nonlinear allometric models for 
leaf area (A) and leaf biomass (B).

than 93% variation based on DBH in A0 and M0 estimation 
(Table 3), providing a sound and reliable means to predict 
these canopy properties in the north-eastern region of 
Bangladesh. Burton et al. (1991) found that DBH is the 
best predictor for estimating A0 and M0 (R

2>0.90). After 
that, the development of A0 and M0 models using non-
destructive methods is a highly steady option where whole 
tree removal is not possible, as is the case in Bangladeshi 
forest reserves (Dobbs et al. 2011). Thus, modified 
randomized branch sampling used in this study will in most 
cases remain the only feasible method and this study 
showed a strong statistical dependence between A0 and M0 
with DBH. Using a non-destructive sampling technique 
for A0 estimation, Grace and Fownes (1998) found that 
DBH could explain 91% variation in A0 of Acacia Koa. Leaf 
area and biomass are positively related to DBH (Tobin et al. 
2006; Calvo-Alvarado et al. 2008) and Vertessy et al. 
(1995) showed that DBH could explain more than 91% of 
true A0 of Eucalyptus regnans. Das (2014) found that the de-
veloped models are explained for more than 96% of the var-
iation based on DBH and height with A0 and M0 of 
Lagerstroemia speciosa. Sarker et al. (2013) also showed that 

DBH could explain 95% variation in A0 and M0 of 
Artocarpus chaplasha. Other studies found higher (Waring et 
al. 1982; Long and Smith 1988; Fownes and Harrington 
1991; Zianis and Mencuccini 2003; Tobin et al. 2006; 
Peter et al. 2010) correlations with DBH. As a result, the 
selected allometric models are significant to tree growth 
models of this species and ecological purposes. It will tend 
to estimate A0 and M0 for trees exhibiting leaf loss due to 
such factors as pruning, insect defoliation etc. After that, I 
expect these relationships to prove valuable quantification 
of tree physiological and environmental processes. 
Therefore, the results obtained support that the regression 
models can be used on stands of different vigour and it is 
probably valid in Bangladesh and other tropical countries.
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