DOI QR코드

DOI QR Code

A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels

  • Ghashochi-Bargha, H. (Aerospace Engineering Department, Centre of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology) ;
  • Sadr, M.H. (Aerospace Engineering Department, Centre of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology)
  • Received : 2013.12.11
  • Accepted : 2014.08.20
  • Published : 2014.12.25

Abstract

In Current paper, the voltages of patches optimization are carried out for minimizing the power consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as design variables. The classical laminated plate theory (CLPT) is considered to model the transient response of the panel, and numerical results are obtained by the finite element method. The performance of the E-ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To check the validity, the transient responses of isotropic and orthotropic panels are compared with those available in the literature and show a good agreement.

Keywords

References

  1. Chandrashekhara, K. and Agarwal, A.N. (1993), "Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach", J. Intel. Mater. Syst. Struct., 4(4), 496-508. https://doi.org/10.1177/1045389X9300400409
  2. Chen, J. and Dawe, D.J. (1996), "Linear transient analysis of rectangular laminated plates by a finite stripmode superposition method", Compos. Struct., 35(2), 213-28. https://doi.org/10.1016/0263-8223(96)00039-6
  3. Elshafei, M.A. (1996), "Smart composite plate shape control using piezoelectric materials", PhD Dissertation, U.S. Naval Postgraduate School, CA.
  4. Fiouz, A.R., Obeydi, M., Forouzani, H. and Keshavarz, A. (2012), "Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism", Struct. Eng. Mech., 44(4), 501-19. https://doi.org/10.12989/sem.2012.44.4.501
  5. Garcia Lage, R., Soares, M., Mota Soares, C.A. and Reddy, J.N. (2004), "Modelling of piezolaminated plates using layerwise mixed finite elements", Comput. Struct., 82(23), 1849-63. https://doi.org/10.1016/j.compstruc.2004.03.068
  6. Ghashochi-Bargh, H. and Sadr, M.H. (2013), "PSO algorithm for fundamental frequency optimization of fiber metal laminated panels", Struct. Eng. Mech., 47(5), 713-27. https://doi.org/10.12989/sem.2013.47.5.713
  7. Han, J.H. and Lee, I. (1999), "Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms", Smart Mater. Struct., 8(2), 257-67. https://doi.org/10.1088/0964-1726/8/2/012
  8. Jones, R.M. (1975), Mechanics of composite materials, Scripta, Washington, DC.
  9. Julai, S. and Tokhi, M.O. (2010), "Vibration suppression of flexible plate structures using swarm and genetic optimization techniques", J. Low Freq. Noise, Vib. Active Control, 29(4), 293-318. https://doi.org/10.1260/0263-0923.29.4.293
  10. Kang, Z. and Tong, L. (2008), "Topology optimization-based distribution design of actuation voltage in static shape control of plates", Comput. Struct., 86(19), 1885-93. https://doi.org/10.1016/j.compstruc.2008.03.002
  11. Kapuria, S., and Yasin, M.Y. (2013), "Active vibration control of smart plates using directional actuation and sensing capability of piezoelectric composites", Acta Mechanica, 224(6), 1185-99. https://doi.org/10.1007/s00707-013-0864-8
  12. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization", Technical Report. Computer Engineering Department, Engineering Faculty, Erciyes University.
  13. Koconis, D.B., Kollar, L.P. and Springer, G.S. (1994), "Shape control of composite plates and shells with embedded actuators, 2. desired shape specified", J. Compos. Mater., 28( 5), 459-82. https://doi.org/10.1177/002199839402800504
  14. Lam, K.Y., Peng, X.Q., Liu, G.R. and Reddy, J.N. (1997), "A finite-element model for piezoelectric composite laminates", Smart Mater. Struct., 6, 583-91. https://doi.org/10.1088/0964-1726/6/5/009
  15. Lee, C.K. (1990), "Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: governing equations and reciprocal relationships", J. Acoust. Soc. Am., 87(3), 1144-58. https://doi.org/10.1121/1.398788
  16. Li, G., Niu, P. and Xiao, X. (2012), "Development and investigation of efficient artificial bee colony algorithm for numerical function optimization", Appl. Soft Comput., 12(1), 320-332. https://doi.org/10.1016/j.asoc.2011.08.040
  17. Loja, R., Soares, M. and Mota Soares, C.A. (2001), "Higher-order B-spline finite strip model for laminated adaptive structures", Comput. Struct., 52(3), 419-27. https://doi.org/10.1016/S0263-8223(01)00032-0
  18. Maleki, S., Tahani, M. and Andakhshideh, A. (2012), "Transient response of laminated plates with arbitrary laminations and boundary conditions under general dynamic loadings", Arch. Appl. Mech., 82(5), 615-630. https://doi.org/10.1007/s00419-011-0577-1
  19. Mezura-Montes, E. and Velez-Koeppel, R.E. (2010), "Elitist artificial bee colony for constrained realparameter optimization", Evolutionary Computation (CEC), 2010 IEEE Congress, July.
  20. Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M. (2005), "Active control of forced vibrations in adaptive structures using a higher order model", Comput. Struct., 71(3), 349-55. https://doi.org/10.1016/j.compstruct.2005.09.009
  21. Montazeri, A., Poshtan, J. and Yousefi-Koma, A. (2008), "The use of 'particle swarm to optimize the control system in a PZT laminated plate", Smart Mater. Struct., 17(4), 045027. https://doi.org/10.1088/0964-1726/17/4/045027
  22. Onoda, J., and Hanawa, Y. (1993), "Actuator placement optimization by genetic and improved simulated annealing algorithms", AIAA J., 31(6), 1167-69. https://doi.org/10.2514/3.49057
  23. Ozturk, H.T. and Durmus, A. (2013), "Optimum cost design of RC columns using artificial bee colony algorithm", Struct. Eng. Mech., 45 (5), 643-54. https://doi.org/10.12989/sem.2013.45.5.643
  24. Robaldo, A., Carrera, E. and Benjeddou, A. (2006), "A unified formulation for finite element analysis of piezoelectric adaptive plates", Comput. Struct., 84(22), 1494-505. https://doi.org/10.1016/j.compstruc.2006.01.029
  25. Sadr, M.H. and Ghashochi Bargh, H. (2012), "Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method", J Glob. Optim., 54, 707-28. https://doi.org/10.1007/s10898-011-9787-x
  26. Shooshtari, A. and Razavi, S. (2010), "A closed form solution for linear and nonlinear free vibrations of composite and fiber metal laminated rectangular plates", Comput. Struct., 92(11), 2663-75. https://doi.org/10.1016/j.compstruct.2010.04.001
  27. Sun, B. and Huang, D. (2000), "Analytical vibration suppression analysis of composite beams with piezoelectric laminae", Smart Mater. Struct., 9(6), 751-60. https://doi.org/10.1088/0964-1726/9/6/303
  28. Sun, D. and Tong, L. (2003), "Optimum control voltage design for constrained static shape control of piezoelectric structures", AIAA J., 41(12), 2444-50. https://doi.org/10.2514/2.6843
  29. Vinson, J.R. and Sierakowski, R.L. (1986), The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff, Dordrecht.

Cited by

  1. Structural damage detection based on Chaotic Artificial Bee Colony algorithm vol.55, pp.6, 2015, https://doi.org/10.12989/sem.2015.55.6.1223
  2. Vibration of a multiphase magneto-electro-elastic simply supported rectangular plate subjected to harmonic forces vol.28, pp.4, 2017, https://doi.org/10.1177/1045389X16649451
  3. Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms vol.17, pp.4, 2016, https://doi.org/10.12989/cac.2016.17.4.435
  4. Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation vol.78, 2015, https://doi.org/10.1016/j.compositesb.2015.03.070
  5. Probabilistic multi-objective optimization of a corrugated-core sandwich structure vol.10, pp.6, 2016, https://doi.org/10.12989/gae.2016.10.6.709