과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Atanackovic, T. M. and Stankovic B. (2004), "Stability of an elastic rod on a fractional derivative type of foundation", J. Sound Vib., 277(1-2), 149-161. https://doi.org/10.1016/j.jsv.2003.08.050
- Bagley, R.L. and Torvik, P.J. (1979), "A generalized derivative model for an elastomer damper", Shock Vib. Bull., 49(2), 135-143.
- Bagley, R.L. and Torvik, P.J. (1986), "On the fractional calculus model of viscoelastic behavior", J. Rheol., 30(1), 133-155. https://doi.org/10.1122/1.549887
- Buczkowski, R. and Torbacki, W. (2001), "Finite element modelling of thick plates on two-parameter elastic foundation", Int. J. Numer. Anal. Meth. Geomech., 25(14), 1409-1427. https://doi.org/10.1002/nag.187
- Chen, W.R., Chen, C.S. and Yu, S.Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., 37(4), 367-383. https://doi.org/10.12989/sem.2011.37.4.367
- Chen, X.P., Zhu, H.H. and Zhou, Q.J. (2006), "Study on modified generalized Kelvin creep consolidation model", Chin. J. Rock Mech. Eng., 25(S2), 3428-3434. (in Chinese)
- Christensen, R.M. (1982), Theory of Viscoelasticity, An Introduction, 2nd Edition, Academic Press, New York, NY, USA.
- Das, B.M. (2010), Principles of Geotechnical Engineering, 7th Edition, Cengage Learning, Stamford, CT, USA.
- Dikmen, U. (2005), "Modeling of seismic wave attenuation in soil structures using fractional derivative scheme", J. Balkan Geophys. Soc., 8(4), 175-188.
- Gemant, A. (1936), "A method of analyzing experimental results obtained from elasto-viscous bodies", Physics, 7(8), 311-317. https://doi.org/10.1063/1.1745400
- Gusella, V. and Terenzi, G. (1997), "Fluid viscous device modelling by fractional derivatives", Struct. Eng. Mech., 5(2), 177-191. https://doi.org/10.12989/sem.1997.5.2.177
- Huang, M.H. and Thambiratnam, D.P. (2002), "Dynamic response of plates on elastic foundation to moving loads", J. Eng. Mech., ASCE, 128(9), 1016-1022. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(1016)
- Kim, S.M. (2004), "Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads", Int. J. Solids Struct., 41(20), 5647-5661. https://doi.org/10.1016/j.ijsolstr.2004.05.006
- Kim, S.M. and Roesset, J.M. (1998), "Moving loads on a plate on elastic foundation", J. Eng. Mech., ASCE, 124(9), 1010-1017. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1010)
- Koeller, R.C. (1984), "Applications of fractional calculus to the theory of viscoelasticity", J. Appl. Mech., ASME, 51(2), 299-307. https://doi.org/10.1115/1.3167616
- Lewandowski, R., Bartkowiak, A. and Maciejewski, H. (2012), "Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models", Struct. Eng. Mech., 41(1), 113-137. https://doi.org/10.12989/sem.2012.41.1.113
- Li, R., Zhong, Y. and Li, M. (2013), "Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method", Proc. R. Soc. A-Math. Phys. Eng. Sci., 469(2153), 20120681. https://doi.org/10.1098/rspa.2012.0681
- Li, R., Zhong, Y. and Tian, B. (2011), "On new symplectic superposition method for exact bending solutions of rectangular cantilever thin plates", Mech. Res. Commun., 38(2), 111-116. https://doi.org/10.1016/j.mechrescom.2011.01.012
- Mainardi, F. (2012), "An historical perspective on fractional calculus in linear viscoelasticity", Fract. Calc. Appl. Anal., 15(4), 712-717.
- Mainardi, F. and Spada, G. (2011), "Creep, relaxation and viscosity properties for basic fractional models in rheology", Eur. Phys. J. Spec. Top., 193(1), 133-160. https://doi.org/10.1140/epjst/e2011-01387-1
- Matsunage, H. (2000), "Vibration and stability of thick plates on elastic foundations", J. Eng. Mech., ASCE, 126(1), 27-34. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(27)
- Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York, NY, USA.
- Nassar, M. (1981), "Bending of a circular plate on a linear viscoelastic foundation", Appl. Math. Model., 5(1), 60-62. https://doi.org/10.1016/0307-904X(81)90062-7
- Nonnenmacher, T.F. and Metzler, R. (1995), "On the Riemann-Liouville fractional calculus and some recent applications", Fractals, 3(3), 557-566. https://doi.org/10.1142/S0218348X95000497
- Saha, K.N. (1997), "Dynamic stability of a rectangular plate on nonhomogeneous Winkler foundation", Comput. Struct., 63(6), 1213-1222. https://doi.org/10.1016/S0045-7949(96)00390-2
- Schiessel, H., Metzler, R., Blumen, A. and Nonnenmacher, T.F. (1995), "Generalized viscoelastic models: their fractional equations with solutions", J. Phys A: Math. Gen., 28(23), 6567-6584. https://doi.org/10.1088/0305-4470/28/23/012
- Smit, W. and de Vries, H. (1970), "Rheological models containing fractional derivatives", Rheol. Acta, 9(4), 525-534. https://doi.org/10.1007/BF01985463
- Sonoda, K. and Kabayashi, H. (1980), "Rectangular plates on linear viscoelastic foundations", J. Eng. Mech. Div., ASCE, 106(2), 323-338.
- Straughan, W.T. (1990), "Analysis of plates on elastic foundations", Ph.D. Dissertation, Texas Tech University, Texas.
- Sumelka, W. (2014), "Non-local Kirchhoff-Love plates in terms of fractional calculus", Arch. Civil Mech. Eng. DOI: 10.1016/j.acme.2014.03.006 (in press)
- Sun, L.L. (2003), "Dynamic response of Kirchhoff plate on a viscoelastic foundation to harmonic circular loads", J. Appl. Mech., 70(4), 595-600. https://doi.org/10.1115/1.1577598
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, 2nd Edition, McGraw-Hill, New York, NY, USA.
- Welch, S.W.J., Rorrer, R.A.L. and Duren R.G. (1999), "Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials", Mech. Time-Depend. Mat., 3(3), 279-303. https://doi.org/10.1023/A:1009834317545
- Yin, D.S., Ren J.J., He C.L. and Chen, W. (2007), "A new rheological model element for geomaterials", Chinese J. Rock Mech. Eng., 26(9), 1899-1903. (in Chinese)
- Yin, D.S., Wu, H., Cheng, C. and Chen, Y.Q. (2013), "Fractional order constitutive model of geomaterials under the condition of triaxial test", Int. J. Numer. Anal. Meth. Geomech., 37(8), 961-972. https://doi.org/10.1002/nag.2139
- Yin, D.S., Zhang, W., Cheng, C. and Li, Y.Q. (2012), "Fractional time-dependent Bingham model for muddy clay", J. Non-Newtonian Fluid Mech., 187-188, 32-35. https://doi.org/10.1016/j.jnnfm.2012.09.003
- Zaman, M., Taheri, M.R. and Alvappillai, A. (1991), "Dynamic response of a thick plate on viscoelastic foundation to moving loads", Int. J. Numer. Anal. Meth. Geomech., 15(9), 627-647. https://doi.org/10.1002/nag.1610150903
- Zhong, Y., Li, R., Liu, Y. and Tian, B. (2009), "On new symplectic approach for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported", Int. J. Solids Struct., 46(11), 2506-2513. https://doi.org/10.1016/j.ijsolstr.2009.02.001
- Zhong, Y. and Zhang, Y.S. (2006), "Theoretic solution of rectangular thin plate on foundation with four edges free by symplectic geometry method", Appl. Math. Mech., 27(6), 833-839. https://doi.org/10.1007/s10483-006-0614-y
- Zhu, H.H., Liu, L.C. and Ye, X.W. (2011), "Response of a loaded rectangular plate on fractional derivative viscoelastic foundation", J. Basic Sci. Eng., 19(2), 271-278. (in Chinese)
- Zhu, H.H., Liu, L.C., Pei, H.F. and Shi, B. (2012), "Settlement analysis of viscoelastic foundation under vertical line load using a fractional Kelvin-Voigt model", Geomech. Eng., 4(1), 67-78. https://doi.org/10.12989/gae.2012.4.1.067
피인용 문헌
- Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives vol.35, pp.5, 2017, https://doi.org/10.1080/1064119X.2016.1217958
- Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction vol.56, pp.1, 2015, https://doi.org/10.12989/sem.2015.56.1.027
- Fractional calculus-based compression modeling of soft clay vol.2, pp.10, 2014, https://doi.org/10.3208/jgssp.chn-54
- Bending of an isotropic non-classical thin rectangular plate vol.61, pp.4, 2017, https://doi.org/10.12989/sem.2017.61.4.437