DOI QR코드

DOI QR Code

Variation of Glucosinolate Composition during Seedling and Growth Stages of Brassica rapa L. ssp. pekinensis

  • Hong, Eunyoung (Department of Food and Nutrition, Duksung Women's University) ;
  • Kim, Gun-Hee (Department of Food and Nutrition, Duksung Women's University)
  • Received : 2014.03.10
  • Accepted : 2014.06.08
  • Published : 2014.10.31

Abstract

The objective of this study was to evaluate glucosinolate (GSL) profiles and variation of total and individual GSLs concentrations within seedling (0-14 days) and growth stages (0-15 weeks) of Korean Chinese cabbage (Brassica rapa L. ssp. pekinensis). Ten GSLs (progoitrin, glucoraphanin, glucoalyssin, gluconapin, glucobrassicanapin, 4-hydroxyglucobrassin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and gluconasturtiin) were identified from Korean Chinese cabbage. In general, total GSL content significantly decreased during seedling (from 92.89 to $35.26{\mu}mol{\cdot}g^{-1}$ DW) and g rowth stages ( from 74.11 to $1.97{\mu}mol{\cdot}g^{-1}$ DW). Gluconapin was the highest in seeds and in the germination period ($73.1{\mu}mol{\cdot}g^{-1}$ DW) and declined gradually from 73 to 15% during seedling stages. The level of the major aliphatic GSLs, gluconapin and progoitrin, tended to decrease sharply, whereas levels of indolic GSLs (4-methoxyglucobrassicin, glucobrassicin) and aromatic GSLs (gluconasturtiin) were found to increase generally at the beginning of growth stages.

Keywords

References

  1. Barbieri, G., R. Pernica, A. Maggio, S.D. Pascale, and V. Fogliano. 2008. Glucosinolates profile of Brassica rapa L. Subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem. 107:1687-1691. https://doi.org/10.1016/j.foodchem.2007.09.054
  2. Bennett, R.N., J. Ludwig-Muller, G. Kiddle, W. Hilgenberg, and R.M. Wallsgrove. 1995. Developmental regulation of aldoxime formation in seedlings and mature plants of Chinese cabbage (Brassica campestris ssp. pekinensis) and oilseed rape (Brassica napus): Glucosinolate and IAA biosynthetic enzymes. Planta. 196:239-244.
  3. Bergman, F. 1970. The glucosinolate biosynthesis during the course of ontogenesis of Sinapis alba L. Z. Pflanzenphysiol. 62:362-375.
  4. Brudenell, A.J.P., H. Griffiths, J.T. Rossiter, and D.A. Baker. 1999. The phloem mobility of glucosinolates. J. Exp. Bot. 50:745-756. https://doi.org/10.1093/jxb/50.335.745
  5. Bradshaw, J.E., R.K. Geaney, W.H. Macfarlane Smith, S. Gowers, D.J. Gemmell and G.R. Fenwick. 1984. The glucosinolate content of some fodder Brassicas. J. Sci. Food Agr. 35:977-981. https://doi.org/10.1002/jsfa.2740350905
  6. Cartea, M.E., P. Velasco, S. Obregon, G. Padilla, and A. De Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410. https://doi.org/10.1016/j.phytochem.2007.08.014
  7. Charron, C.S., A.M. Saxton, and E.S. Carl. 2005. Relationship of climate and genotype to seasonal variation in the glucosinolatemyrosinase system I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J. Sci. Food Agr. 85:671-681. https://doi.org/10.1002/jsfa.1880
  8. Chew, F.S. 1988. Biological effects of glucosinolates, p. 155-181. In: H.G. Cutler (ed.). Biologically active natural products: Potential use in agriculture. American Chemical Society, Washington, D.C.
  9. Chen, S. and E. Andreasson. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Bioch. 39:743-758. https://doi.org/10.1016/S0981-9428(01)01301-8
  10. Chu, Y.F., J. Sun, X. Wu, and R.H. Liu. 2002. Antioxidants and antiproliferative activities of common vegetables. J. Agr. Food Chem. 50:6910-6916. https://doi.org/10.1021/jf020665f
  11. Ciska, E., B. Martyniak-Przybyszewska, and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agr. Food Chem. 48:2862-2867. https://doi.org/10.1021/jf981373a
  12. Clossais-Besnard, N. and F. Larher. 1991. Physiological role of glucosinolates in Brassica napus. Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J. Sci. Food Agr. 56:25-38. https://doi.org/10.1002/jsfa.2740560104
  13. Cohen, J.H., A.R. Kristal, and J.L. Stanford. 2000. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer I. 92:61-68. https://doi.org/10.1093/jnci/92.1.61
  14. De March, G., D.I. McGregor, and G. Seguin-Shwartz. 1989. Glucosinolate content of maturing pods and seeds of high and low glucosinolate summer rape. Can. J. Plant Sci. 69:929-932. https://doi.org/10.4141/cjps89-112
  15. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  16. Fenwick, G.R., N.M. Griffiths, and R.K. Heaney. 1983a. Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): The role of glucosinolates and their breakdown products. J. Sci. Food Agric. 34:73-80 https://doi.org/10.1002/jsfa.2740340111
  17. Fenwick, G.R., R.K. Heaney, and W.J. Mullin. 1983b. Glucosinolates and their breakdown products in food and food plants. CRC Cr. Rev. Food Sci. 18:123-201.
  18. Fieldsend, J. and G.F.J. Milfor. 1994. Changes in glucosinolates during crop development in single- and double-low genotypes of winter oilseed rape (Brassica napus): I. Production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulphur within the crop. Ann. Appl. Biol. 124:531-542. https://doi.org/10.1111/j.1744-7348.1994.tb04157.x
  19. Grubb, C.D. and S. Abel. 2006. Glucosinolates metabolism and its control. Trends. Plant. Sci. 11:89-100.
  20. Halkier, B.A. and L. Du. 1997. The biosynthesis of glucosinolates. Trends. Plant Sci. 2:425-431. https://doi.org/10.1016/S1360-1385(97)90026-1
  21. Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303-333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  22. Jeffery, E.H., A.F. Brown, A.C. Kurilich, A.S. Keek, N. Matusheski, B.P. Klein, and J.A. Juvik. 2003. Variation in content of bioactive components in broccoli. J. Food Comp. Anal. 16:323-330. https://doi.org/10.1016/S0889-1575(03)00045-0
  23. Kushad, M.M., A.F. Brown, A.C. Kurilich, J.A. Juvik, B.P. Klein, M.A. Wallig, and E.H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agr. Food Chem. 47:1541-1548. https://doi.org/10.1021/jf980985s
  24. Lee, C.H. 1997. Lactic acid fermented foods and their benefits in Asia. Food Control. 8:259-269. https://doi.org/10.1016/S0956-7135(97)00015-7
  25. Lein, K.A. 1972. Genetical and physiological studies on the formation of glucosinolates in rape seeds: Localisation of the main site of glucosinolate biosynthesis by grafting experiments. Z Pflanzenphysiol 67:333-342. https://doi.org/10.1016/S0044-328X(72)80094-1
  26. Mattaus, B. and H. Luftmann. 2000. Glucosinolates in members of the family Brassicaceae: Separation and identification by LC/ESI-MS-MS. J. Agr. Food Chem. 48:2234-2239. https://doi.org/10.1021/jf991306w
  27. McGregor, D.I. 1998. Glucosinolate content of developing rapeseed (Brassica napus L "Midas") seedlings. Can. J. Plant Sci. 68:367-380.
  28. Mithen, R.F., M. Dekker, R. Verkerk, S. Rabot, and T. Johnson lan. 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods (review). J. Sci. Food Agr. 80:967-984. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V
  29. Paxman, P.J. and R. Hill. 1974. Thiocyanate content of Kale. J. Sci. Food Agr. 25:323-328. https://doi.org/10.1002/jsfa.2740250313
  30. Pereira, F.M.V., E. Rosa, J.W. Fahey, K.K. Stephenson, R. Carvalho, and A. Aires. 2002. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea Var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agr. Food Chem. 50: 6239-6244. https://doi.org/10.1021/jf020309x
  31. Podsedek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT- Food Sci. Technol. 40:1-11. https://doi.org/10.1016/j.lwt.2005.07.023
  32. Porter, A.J.R., A.M. Morton, G. Kiddle, K.J. Doughty, and R.M. Wallsgrove. 1991. Variation in the glucosinolate content of oilseed rape (Brassica napus L.), I. Effects of leaf age and position. Ann. Appl. Biol. 118:461-467. https://doi.org/10.1111/j.1744-7348.1991.tb05647.x
  33. Renwick, J.A.A. 2001. Variable diets and changing taste in plant insect relationships. J. Chem. Ecol. 27:1063-1076. https://doi.org/10.1023/A:1010381509601
  34. Rosa, E.A.S. and R. Heaney. 1996. Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbages and kale. Anim. Feed Sci. Tech. 57:111-127. https://doi.org/10.1016/0377-8401(95)00841-1
  35. Sarwar, M. and J.A. Kirkegaard. 1998. Biofumigation potential of Brassicas. II. Effect of environment and ontogeny of glucosinolate production and implications for screening. Plant Soil. 201:91-101. https://doi.org/10.1023/A:1004333230899
  36. Vallejo, F., F.A. Tomas-Barveran, and C. Carcia-Viguera. 2002. Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain. J. Sci. Food Agr. 82:1293-1297. https://doi.org/10.1002/jsfa.1183
  37. Verhoeven, D.T., H. Verhagen, R.A. Goldbohm, P.A. van den Brandt, and G.A. van Poppel. 1997. A review of mechanisms underlying anti carcinogenecity by Brassica vegetables. Chem-Biol. Interact. 103:79-129. https://doi.org/10.1016/S0009-2797(96)03745-3
  38. West, L.G., K.A. Meyer, B.A. Balch, F.J. Rossi, M.R. Schultz, and G.W. Haas. 2004. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J. Agr. Food Chem. 52:916-926. https://doi.org/10.1021/jf0307189

Cited by

  1. Different vegetative growth stages of Kimchi cabbage (Brassica rapa L.) exhibit specific glucosinolate composition and content vol.59, pp.3, 2018, https://doi.org/10.1007/s13580-018-0040-0
  2. Comparison of Glucosinolate Contents in Leaves and Roots of Radish (Raphanus spp.) vol.30, pp.6, 2014, https://doi.org/10.7732/kjpr.2017.30.6.579
  3. Genotypic Variation of Glucosinolates and Their Breakdown Products in Leaves of Brassica rapa vol.66, pp.22, 2014, https://doi.org/10.1021/acs.jafc.8b01038
  4. Oviposition Preference of the Cabbage Root Fly towards Some Chinese Cabbage Cultivars: A Search for Future Trap Crop Candidates vol.11, pp.2, 2020, https://doi.org/10.3390/insects11020127
  5. Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa) vol.308, pp.None, 2020, https://doi.org/10.1016/j.foodchem.2019.125657
  6. Interactions between Brassica Biofumigants and Soil Microbiota: Causes and Impacts vol.69, pp.39, 2014, https://doi.org/10.1021/acs.jafc.1c03776