DOI QR코드

DOI QR Code

Antioxidant Enzymes and Antimicrobial Activities in Sponge Gourds

수세미 오이의 항산화 효소 및 항균 활성 검증

  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Moon, Ji Hye (Urban Agriculture Research Team, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Woo Moon (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, Dong Kum (Urban Agriculture Research Team, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Yoon, Moo Kyung (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이희주 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 문지혜 (농촌진흥청 국립원예특작과학원 도시농업연구팀) ;
  • 이우문 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 박동금 (농촌진흥청 국립원예특작과학원 도시농업연구팀) ;
  • 윤무경 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2013.05.06
  • Accepted : 2014.04.02
  • Published : 2014.10.31

Abstract

Luffa cylindrica Roem (sponge gourd) belongs to the Cucurbitaceae family and has been cultivated as an ornamental plant in Korea. Recently, its cultivation area has been increased with an increase in demand for it as an ingredient in cosmetics, herbal medicines, and health supplements. We analyzed inorganic components of sap collected from land race sponge gourds. We also measured antioxidant enzyme activities and antimicrobial activities of the plant, seed, and sap to examine functional properties of sponge gourd. The sap of the sponge gourd contained high levels of K, Ca, P, and Mg, with the most abundant mineral in the sap being K ($470mg{\cdot}L^{-1}$). The amounts of Ca and Mg were 2 and 1.7 times more than those found in cucumber (Cucumis sativus), respectively. Ascorbate peroxidase was more active than catalase and superoxide dismutase in various plant parts of sponge gourd. Antioxidant activities were much lower in stems than in other plant parts such as leaves, roots, flowers, fruits, seeds, and sap. In addition, sap showed a very low level of antimicrobial activity against two food-borne pathogens, Vibrio parahaemdyticus and Propionibacterium acne, and none against the other eight tested food-borne pathogens. Antimicrobial activities against Candida albicans and Malassezia furfur, which causes dermatitis, appeared to be higher in sap than in other parts of sponge gourd plants. Overall, the antimicrobial activity against Malassezia furfur appeared to be higher than against Candida albicans.

수세미오이(Luffa cynlindrica)는 박과 채소작물로 우리나라에서는 주로 관상용으로 재배되어 왔다. 그러나 최근에는 미용소재, 한방약재, 건강보조용 등으로 수요가 증가하면서 재배면적이 증가하고 있다. 따라서 본 실험은 수세미오이의 기능성을 구명하기 위하여 재래종 수세미오이를 사용하여 수액의 무기성분을 분석하고 수액과 식물체 부위별 항산화 효소 활성과 항균활성을 측정하였다. 수세미오이 수액은 K, Ca, P, Mg이 주요 성분이었으며, K의 함량이 $470mg{\cdot}L^{-1}$으로 가장 높았다. Ca과 Mg의 함량은 오이의 약 2배와 1.7배로 높게 나타났다. 수세미오이의 조직별 항산화효소 활성을 분석한 결과 전체적으로 APX 활성이 CAT와 SOD 활성보다 높았다. 식물체 부위별로 비교해 볼 때 항산화효소 활성은 잎, 뿌리, 꽃, 과실, 종자, 수액보다 줄기에서 가장 낮게 나타났다. 수세미오이 수액의 식품유해균 10종에 대한 항균 활성은 Vibrio parahaemdyticus와 Propionibacterium acne에 대하여 미미한 활성을 보였을 뿐 그 외 8종의 균에 대해서는 효과가 없었다. 피부염 등 인체 감염을 일으키는 Candida albicans와 Malassezia furfur에 대한 수세미오이의 부위별 항균활성 분석 결과, 수액의 항균활성이 식물체의 다른 부위보다 높게 나타났다. 전체적으로 Malassezia furfur에 대한 항균활성이 Candida albicans에 대한 항균활성보다 높은 것으로 나타났다.

Keywords

References

  1. Ansari, N.M., L. Houlihan, B. Hussain, and A. Pieroni. 2005. Antioxidant activity of five vegetables traditionally consumed by South-Asian migrants in Bradford, Yorkshire, UK. Phytother. Res. 19:907-911. https://doi.org/10.1002/ptr.1756
  2. Bauer, A.W., W.M. Kirby, J.C. Sherris, and M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45:493-496.
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chang, K.W., C.S. Moon, H.D. Lee, C.J. Lee, and U.C. Lee. 1991. Determination of the effective components in the various parts of Luffa cylindrica (L.) Roemer and development to remove the flesh from its fruit: (I) Determination of chemical components in the various parts of Luffa cylindrica (L.) Roemer by GC and GC/MS. J. Kor. Agric. Chem. Soc. 34:366-372.
  5. Chen, G.X. and K. Asada. 1989. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987-998.
  6. Chun, S.C., S.Y. Jee, and S.K. Lee. 2004. The antimicrobial activity of Naesohwangryuntang and its composition oriental medicines. Kor. J. Herbol. 19:51-60.
  7. Chung, M.J., Y.S. Kim, I.S. Lee, J.S. Jo, and N.J. Sung. 1995. The components of the sap from Gorosoe (Acer mono Max.) and sugar maple (Pseudo-sieboldianum Kom.). J. Kor. Soc. Food Nutr. 24:911-916.
  8. Devi, G.S., A.K. Muthu, D.S. Kumar, S. Rekha, Indhumathy, and R. Nandhini. 2009. Studies on the antibacterial and antifungal activities of the ethanolic extracts of Luffa cylindrica (Linn) fruit. Int. J. Drug Dev. Res. 1:105-109.
  9. Du, Q., Y. Xu, L. Li, Y. Zhao, G. Jerz, and P. Winterhalter. 2006. Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem. J. Agric. Food Chem. 54:4186-4190. https://doi.org/10.1021/jf0604790
  10. Eastin, E.F. 1978. Total nitrogen determination for plant material containing nitrate. Anal. Biochem. 85:591-594. https://doi.org/10.1016/0003-2697(78)90259-2
  11. Han, J.H., J.H. Kim, S.G. Kim, S.H. Jung, D.H. Kim, G.E. Kim, and W.K. Whang. 2007. Anti-oxidative compounds from the aerial parts of Atractylodes macrocephala Koidzumi. J. Pharm. Soc. Korea 51:88-95. https://doi.org/10.3938/jkps.51.88
  12. Kang, D.G., C.K. Yun, and H.S. Lee. 2003. Screening and comparison of antioxidant activity of solvent extracts of herbal medicines used in Korea. J. Ethnopharmacol. 87:231-236. https://doi.org/10.1016/S0378-8741(03)00142-9
  13. Kim, E.S., J.M. Lee, C.H. Lee, J.H. Cho, J.B. Jang, and K.S. Lee. 2007. Antimicrobial effects of herbs for removing dampness and promoting urination against vaginal microbe. J. Orient. Gynecol. 20:1-15.
  14. Kim, H.S., T.S. Yu, I.S. Lee, Y.W. Kim, and S.H. Yeo. 2003. Screening of the antimicrobial and antitumor activity of Xanthlum strumarlum L. extract. Kor. J. Biotechnol. Bioeng. 18:55-61.
  15. Kwon, J.W., E.J. Lee, Y.C. Kim, H.S. Lee, and T.O. Kwon. 2008. Screening of antioxidant activity from medicinal plant extracts. Kor. J. Pharmacogn. 39:155-163
  16. Lee, S.H. and J.S. Lee. 2007. Production and characteristics of antidandruffy compound from Chrysanthemum zawadskii. Kor. J. Microbiol. Biotechnol. 35:220-225.
  17. Mishra, N.P., R.K. Mishra, and G.S. Singhal. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102:903-910.
  18. Na, J.H, H.J. Park, H.J. Lee, and J.A. Seo. 2009. Study on the possibility of storing sap from sponge gourd (Luffa cylindrica L). J. Kor. Soc. Food Preserv. Proc. p. 149-150.
  19. Olaofea, O., B.Y. Okiribitia, and M.O. Aremub. 2008. Chemical evaluation of the nutritive value of smooth luffa (Luffa cylindrica) seed's kernel. Electronic J. Environ. Agric. Food Chem. 7: 3444-3452.
  20. Oyetayo, F.L., V.O. Oyetayo, and V. Ajewole. 2007. Phytochemical profile and antibacterial properties of the seed and leaf of the luffa plant (Luffa cylindrica). J. Pharmacol. Toxicol. 2:586-589. https://doi.org/10.3923/jpt.2007.586.589
  21. Park, J.S., K.W. Chang, and J.I. Lee. 1996. Inorganic components and some physical properties of sap from sponge-gourd (Luffa cylindrica L.) as affected by collection time. Agric. Chem. Biotechnol. 39:67-69.
  22. Poma, A., K. Galeota, M. Miranda, and L. Spano. 1997. A ribosome-inactivating protein principle from hairy roots and seeds of Luffa cylindrica (L) Roem and its cytotoxicity on melanotic and amelanotic melanoma cell lines. Inter. J. Pharmacognosy 35:212-214. https://doi.org/10.1076/phbi.35.3.212.13299
  23. Pardossi, A., G. Carmassi, C. Diara, L. Incrocci, R. Maggini, and D. Massa. 2011. Fertigation and substrate management in closed soilless culture. Univ. of Pisa, Pisa.
  24. Shin, Y.S., J.E. Lee, I.K. Yeon, H.W. Do, J.D. Cheung, C.K. Kang, S.Y. Choi, S.J. Youn, J.G. Cho, and D.J. Kwoen. 2008. Antioxidant and antimicrobial effects of extract with water and ethanol of oriental melon (Cucumis melo L. var. makuwa Makino). J. Kor. Soc. Appl. Biol. Chem. 51:194-199.
  25. Tabata, M., S. Tanaka, H.J. Cho, C. Uno, J. Shimakura, and M. Ito. 1993. Production of an anti-allergic triterpene, bryonolic acid, by plant cell cultures. J. Nat. Prod. 56:165-174. https://doi.org/10.1021/np50092a001
  26. Tanaka, S., C. Uno, M. Akimoto, M. Tabata, C. Honda, and W. Kamisako. 1991. Anti-allergic effect of bryonolic acid from Luffa cylindrica cell suspension cultures. Planta Med. 57:527-530. https://doi.org/10.1055/s-2006-960199
  27. Wang, H., G. Cao, and R.L. Prior. 1996. Total antioxidant capacity of fruits. J. Agric. Food Chem. 44:701-705. https://doi.org/10.1021/jf950579y

Cited by

  1. Antibacterial Effect and Deodorization Effect of Extracts from Different Parts of Zingiber officinale vol.18, pp.4, 2014, https://doi.org/10.20402/ajbc.2020.0070
  2. 수세미오이 발효추출물의 항산화 및 피부암 억제 효과 vol.22, pp.3, 2014, https://doi.org/10.5762/kais.2021.22.3.408