DOI QR코드

DOI QR Code

Effect of NO Treatment during Shelf Life of 'Hayward' Kiwifruit after Storage at Cold Temperature

Nitric Oxide 처리가 저온 저장된 키위과실의 상온 유통 중 품질에 미치는 영향

  • Eum, Hyang Lan (NICEM Pyeongchang Branch Institute, Green Bio Science & Technology, Seoul National University) ;
  • Lee, Eun Jin (Department of Plant Science, College of Agricultural & Life Sciences, Seoul National University) ;
  • Hong, Sae Jin (Department of Plant Science, College of Life Sciences, Gangneung-Wonju National University)
  • 엄향란 (서울대학교 그린바이오과학기술연구원 나이셈 평창분원) ;
  • 이은진 (서울대학교 식물생산과학부) ;
  • 홍세진 (강릉원주대학교 식물생명과학과)
  • Received : 2013.07.11
  • Accepted : 2014.06.08
  • Published : 2014.10.31

Abstract

The effect of nitric oxide (NO) treatment on the quality of kiwifruit, cv. Hayward, was studied at room temperature after cold storage for one or three months at $0^{\circ}C$. Kiwifruits cold-stored for one month were treated with $200{\mu}L{\cdot}L^{-1}$ NO and subsequently transferred to room temperature to monitor quality changes over the course of their shelf life. Weight loss was high in fruits not treated with NO. Ethylene production was delayed for two days by NO treatment, and respiration rate was reduced to less half than that of the control. The kiwifruits stored for three months were treated with $N_2$ and 100, 200, or $500{\mu}L{\cdot}L^{-1}$ NO, or air alone. The highest weight loss was observed in kiwifruit treated with $100{\mu}L{\cdot}L^{-1}$ NO. While ethylene production was high in fruits treated with $100{\mu}L{\cdot}L^{-1}$ NO and without the treatment, it was relatively low in the kiwifruit treated with 200 and $500{\mu}L{\cdot}L^{-1}$ NO. Firmness was abruptly decreased in fruits not treated with NO, while the kiwifruit exposed to $200{\mu}L{\cdot}L^{-1}$ NO maintained the s ame level of f irmness for 9 days a t room t emp erature. In addition, growth o f Botrytis cinerea was inhibited by NO as compared with the air and $N_2$ treatments. Our findings indicate that NO can be used effectively for prolonging shelf life and maintaining fruit quality during distribution after cold storage. The optimum NO concentration for cold-stored kiwifruits was found to be $200{\mu}L{\cdot}L^{-1}$.

본 연구는 저온 저장된 키위과실의 상온 유통 중 에틸렌 발생 및 품질에 미치는 영향을 확인함으로써 유통기간 연장에 NO 처리 효과를 확인하기 위해서 수행하였다. 1개월 저장된 키위를 $200{\mu}L{\cdot}L^{-1}$ NO를 처리한 후 대조구와 함께 상온에 저장하면서 품질을 비교하였다. 상온에서 저장하는 동안 무게손실은 무처리구에 높았다. 에틸렌 생성은 NO 처리에 의해서 2일 지연되었으며, 호흡률은 대조구에 비해 2배이상 낮았다. 3개월 저장된 키위과실은 100, 200, 그리고 $500{\mu}L{\cdot}L^{-1}$ 농도로 NO를 처리하였다. 대조구는 NO를 처리하지 않은 무처리구와 $N_2$ 처리구를 두었다. 무게손실은 $100{\mu}L{\cdot}L^{-1}$에서 가장 많았으며, 1개월 저장된 과실에 비해서도 높은 손실률을 보였다. 에틸렌 생생은 대조구와 $100{\mu}L{\cdot}L^{-1}$ NO에서 높은 반면 $200{\mu}L{\cdot}L^{-1}$ NO와 $500{\mu}L{\cdot}L^{-1}$ NO에서는 상대적으로 낮았다. 경도는 무처리구와 $N_2$ 처리구는 저장일수가 경과 되면서 급격히 연화된 반면, NO 처리구에서는 6일까지 경도가 높게 유지되었으며, 특히 $200{\mu}L{\cdot}L^{-1}$ NO 처리구는 9일까지 유지되었다. 키위과실로부터 채취하여 배양된 Botrytis cinerea에 NO를 처리한 결과 처리 후 2일 경과될 때까지 무처리구와 $N_2$ 처리구에 비해서 NO 처리구는 곰팡이 번식이 적었다. 이상의 결과를 종합해 보면 저장된 과실을 상온에 유통하기 전에 NO 처리는 에틸렌 발생 및 호흡을 저지시키고, 연화를 지연시키는데 효과가 있다. NO의 적정 처리 농도는 $200{\mu}L{\cdot}L^{-1}$ NO을 기준으로 너무 낮거나 높으면 NO의 효과가 줄어든다.

Keywords

References

  1. Adel, A.K. 2002. Postharvest biology and technology: An overview, p. 39-47. In: Postharvest technology of horticultural crops. University of California Agriculture and Natural Resources Publ., California, USA.
  2. Antunes, M.D.C. and E.M. Sfakiotakis. 2002. Ethylene biosynthesis and ripening behaviour of 'Hayward' kiwifruit subjected to some controlled atmospheres. Postharvest Biol. Technol. 26: 167-179. https://doi.org/10.1016/S0925-5214(02)00040-6
  3. Antunes, M.D.C., I. Pateraki, A.K. Kanellis, and E.M. Sfakiotakis. 2000. Differential effects of low temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of 'Hayward' kiwifruit. J. Hort. Sci. Biotechnol. 75:575-580.
  4. Arpaia, M.L., J.M. Labavitch, C. Greve, and A.A. Kader. 1987. Changes in cell wall components of kiwifruit during storage in air or controlled atmosphere. J. Amer. Soc. Hort. Sci. 112:474-481.
  5. Batta, Y.A. 2007. Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biol. Technol. 43:143-150. https://doi.org/10.1016/j.postharvbio.2006.07.010
  6. Bautista-Banos, S., P.G. Long, and S. Ganesh. 1997. Curing of kiwifruit for control of postharvest infection by Botrytis cinerea. Postharvest Biol. Technol. 12:137-145. https://doi.org/10.1016/S0925-5214(97)00043-4
  7. Beligni, M.V., A. Fath, P.C. Bethke, L. Lamattina and R.L. Jones. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol. 129:1642-1650. https://doi.org/10.1104/pp.002337
  8. Borutaite, V. and G.C. Brown. 1996. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J. 315:295-299.
  9. Burdon, J., M. Punter, D. Billing, P. Pidakala and K. Kerr. 2014. Shrivel development in kiwifruit. Postharvest Biol. Technol. 87:1-5. https://doi.org/10.1016/j.postharvbio.2013.07.031
  10. Delledonne, M., Y. Xia, R.A. Dixon, and C. Lamb. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588. https://doi.org/10.1038/29087
  11. Eum, H.L. and S.K. Lee. 2007. The responses of Yukbo strawberry (Fragaria ${\times}$ ananassa Duch.) fruit to nitric oxide. Food Sci. Biotechnol. 16:123-126.
  12. Eum, H.L., D.K. Hwang, and S.K. Lee. 2009a. Nitric oxide reduced chlorophyll degradation in broccoli (Brassica oleracea L. var. italica) florets during senescence. Food Sci. Technol. Int. 15:223-228. https://doi.org/10.1177/1082013208339706
  13. Eum, H.L., D.K. Hwang, Y.P. Hong, and S.K. Lee. 2009b. Treatment of Nitric oxide to improve the quality of 'Mibaekdo' peach during shelf life. Kor. J. Hort. Sci. Technol. 27:618-624.
  14. Eum, H.L., H.B. Kim, S.B. Choi, and S.K. Lee. 2009c. Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur. Food Res. Technol. 228:331-338. https://doi.org/10.1007/s00217-008-0938-3
  15. Hausladen, A. and J.S. Stamler. 1998. Nitric oxide in plant immunity. Proc. Natl. Acad. Sci. USA 95:10345-10347. https://doi.org/10.1073/pnas.95.18.10345
  16. Kays, S.J. and R.E. Paull. 2004. Metabolic processes in harvested products, p. 79-136. In: Postharvest biology. Exon Press, Athens, Georgia, USA.
  17. Klessig, D.F., J. Durner, R. Noad, D.N. Navarre, D. Wendehenne, D. Kumar, J.M. Shou, J. Shah, S. Zhang, P. Kachroo, Y. Trifa, D. Pontier, E. Lam and H. Silva. 2000. Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA. 97:8849-8855. https://doi.org/10.1073/pnas.97.16.8849
  18. Ku, V.V.V., R.B.H. Wills, and Y.Y. Leshem. 2000. Use of nitric oxide to reduce postharvest water loss from horticultural produce. J. Hort. Sci. Biotechnol. 75:268-270.
  19. Laxalt, A.M., M.V. Beligni, and L. Lamattina. 1997. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur. J. Plant Pathol. 103:643-651. https://doi.org/10.1023/A:1008604410875
  20. Leshem, Y.Y. and Y. Pinchasov. 2000. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). J. Exp. Bot. 51:1471-1473. https://doi.org/10.1093/jexbot/51.349.1471
  21. Leshem, Y.Y., R.B.H. Wills, and V.V. Ku. 1998. Evidence for the function of the free radical gas - nitric oxide (NO.) - as an endogenous maturation and senescence regulating factor in higher plant. Plant Physiol. Biochem. 36:825-833. https://doi.org/10.1016/S0981-9428(99)80020-5
  22. Malolepsza, U. and S. Rozalska. 2005. Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. Plant Physiol. Biochem. 43:623-635. https://doi.org/10.1016/j.plaphy.2005.04.002
  23. Mitchell, F.G. 1990. Postharvest physiology and technology of kiwifruit. Acta Hortic. 282:291-307.
  24. Saltveit, M.E. 1999. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol. Technol. 15:279-292. https://doi.org/10.1016/S0925-5214(98)00091-X
  25. Stow, J.R., C.J. Dover, and P.M. Genge. 2000. Control of ethylene biosynthesis and softening in 'Cox's Orange Pippin' apples during low-ethylene, low-oxygen storage. Postharvest Biol. Technol. 18:215-225. https://doi.org/10.1016/S0925-5214(99)00082-4
  26. Wink, D.A. and J.B. Mitchell. 1998. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25:434-456. https://doi.org/10.1016/S0891-5849(98)00092-6