DOI QR코드

DOI QR Code

Analyses of CO2 Concentration and Balance in a Closed Production System for King Oyster Mushroom and Lettuce

밀폐형 식물생산시스템 내 새송이 버섯과 상추의 혼합 재배 비율에 따른 CO2 농도 변화 및 균형 분석

  • Received : 2013.12.20
  • Accepted : 2014.02.05
  • Published : 2014.10.31

Abstract

The large amount of $CO_2$ emitted from mushrooms during incubation and developmental stages can be utilized in plant production systems as a $CO_2$ source. The objectives of this study were to measure the $CO_2$ emission and absorption rates of mushroom and lettuce, respectively, and to analyze the $CO_2$ concentrations at various ratios of mushroom and lettuce in a closed production system. The $CO_2$ emission rate of king oyster mushrooms (Pleurotus eryngii ( DC.) Qu$\acute{e}$l) and $CO_2$ absorption rate of lettuces (Lactuca sativa L. cv. Asia Heuk Romaine) were measured by using two closed acryl chambers ($1.0m{\times}0.8m{\times}0.5m$) in which indoor temperatures were maintained at $18^{\circ}C$ and $22^{\circ}C$, respectively. The lettuce was grown at a light intensity of PPF $340mol{\cdot}m^{-2}{\cdot}s^{-1}$ and with nutrient solution at EC $1.2dS{\cdot}m^{-1}$. The air was periodically circulated between the two chambers using a diaphragm pump. The $CO_2$ emission rate of the mushroom increased until the $15^{th}$ day after scratching (DAS) and then decreased. The rate also increased with increased indoor temperature. In particular, the $CO_2$ emission rate per fresh weight of fruit body increased by about 3.1 times after thinning compared to before thinning. In terms of $CO_2$ balance, the $CO_2$ emission rates from a bottle (950 mL) of the mushroom at 9, 12, and 14 DAS were equivalent to those of 3, 4.5, and 5.5 lettuce plants at 7, 10, and 12 DAT (days after transplanting), respectively. This work shows that balance in $CO_2$ concentration could be achieved using an appropriate ratio of the two crops in a closed production system.

버섯은 배양과 생육과정을 거치면서 다량의 $CO_2$를 배출하므로 식물을 생산하는 식물생산시스템에서 $CO_2$ 공급원으로 활용할 수 있다. 본 연구의 목적은 버섯과 상추의 생육시기에 따른 $CO_2$ 발생 속도와 흡수 속도를 측정하고, 혼합식물 생산 시스템에서 두 작물의 재배 비율에 따른 $CO_2$ 농도를 분석하는 것이다. 새송이 버섯과 상추 아시아 흑로메인 품종을 실험에 사용하였으며, 각각 $18^{\circ}C$, $22^{\circ}C$로 내부온도가 유지되는 밀폐형 아크릴 챔버($1.0m{\times}0.8m{\times}0.5m$)에서 $CO_2$ 발생 속도와 흡수 속도를 측정하였다. 상추는 PPF $340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 광도와 EC $1.2dS{\cdot}m^{-1}$의 양액에서 재배하였고, 다이아프램(diaphragm) 펌프를 이용하여 주기적으로 버섯 챔버와 상추 챔버 사이의 공기를 순환시켰다. 버섯의 $CO_2$ 발생 속도는 균 긁기 후 15일차까지 증가한 후 다시 감소하였으며, 생육 온도가 높아질수록 $CO_2$ 발생 속도가 증가하였다. 특히 솎음 처리에 의해 버섯의 자실체 생체중 당 $CO_2$ 발생 속도가 약 3.1배 증가하였다. $CO_2$ 균형 관점에서 보면, 균 긁기 후 9, 12, 14일차 버섯 1병(950mL)의 $CO_2$ 발생 속도는, 정식 후 7, 10, 12일인 상추 3, 4.5, 5.5 개체 $CO_2$ 흡수 속도에 대응하는 것으로 나타났다. 따라서 두 작물의 적합한 재배 비율의 설정을 통하여 밀폐형 혼합 식물생산시스템 내 $CO_2$ 농도 균형을 이루는 것이 가능하다.

Keywords

References

  1. Boswell, G.P., H. Jacobs, G.M. Gadd, K. Ritz, and F.A. Davidson. 2003. A mathematical approach to studying fungal mycelia. Mycologist 17:165-171. https://doi.org/10.1017/S0269915X04004033
  2. Caporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon-dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L). New Phytol. 111:473-481. https://doi.org/10.1111/j.1469-8137.1989.tb00710.x
  3. Daunicht, H.J. 1997. Gas turnover and gas conditions in hermetically closed plant production systems, p. 225-244. In: E. Goto, K. Kurata, M. Hayashi, and S. Sase. (eds.). Plant production in closed ecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  4. Jang, M.J., T.M. Ha, and Y.C. Ju. 2007. Comparison of respiration characteristics on the new variety of oyster mushroom according to the growth temperature. J. Mushroom Sci. Prod. 5:65-70.
  5. Jang, M.J., T.M. Ha, Y.H. Lee, and Y.C. Ju. 2009. Growth characteristics of variety of oyster mushroom (Pleurotus ostreatus) as affected by number of air exchanges. J. Bio-Env. Con. 18:208-214.
  6. Kang, M.S., T.S. Kang, A.S. Kang, H.R. Shon, and J.M. Sung. 2000. Studies on mycelial growth and artificial cultivation of Pleurotus eryngii. Kor. J. Mycol. 28:73-80.
  7. Kim, H.K., J.C. Cheong, S.J. Seok, G.P. Kim, D.Y. Cha, and B.J. Moon. 1997. The artificial cultivation of Pleurotus eryngii (II). Kor. J. Mycol. 25:311-319.
  8. Kim, K.S., M.K. Kim, and S.W. Nam. 2004. Optimization of growth environment in the enclosed plant production system using photosynthesis efficiency model. J. Bio-Env. Con. 13: 209-216.
  9. Kim, S.Y., M.K. Kim, C.H. Im, K.H. Kim, K.K. Park, W.D. Song, and J.S. Ryu. 2012. Optimal temperature for Pleurotus eryngii cultivation. J. Mushroom Sci. Prod. 10:160-166.
  10. Kim, T.Y., D.M. Kim, J.H. Shin, and J.E. Son. 2012. Dynamic response of whole canopy photosynthetic rate with growth stage at various combinations of light intensity and $CO_{2}$ levels. Kor. J. Hort. Sci. Technol. 30:36-36.
  11. Kitaya, Y., M. Kiyota, I. Aiga, K. Yabuki, K. Nitta, A. Ikeda, and S. Nakayama. 1992. Carbon dioxide and oxygen budgets of a plant cultural system in a CELSS: A case of cultivation of lettuce and turnips. Adv. Space Res. 12:37-40.
  12. Kitaya, Y., A. Tani, M. Kiyota, and I. Aiga. 1994. Plant growth and gas balance in a plant and mushroom cultivation system. Adv. Space Res. 14:281-284.
  13. Lee, D.J., K.P. Kim, and B.E. Lee. 2003. Studies on artificial cultivation of Pleurotus eryngii (De Canolle ex Fries) Quel. Kor. J. Mycol. 31:192-199. https://doi.org/10.4489/KJM.2003.31.3.192
  14. Lee, H.D., H.S. Yoon, W.O. Lee, H. Jeong, K.H. Cho, and W.K. Park. 2003. Estimated gas concentrations of MA (modified atmosphere) and changes of quality characteristics during the MA storage on the oyster mushrooms. Kor. J. Food Preserv. 10:16-22.
  15. Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43:1951-1956.
  16. National Agricultural Products Quality Management Service (NAQS). 2012. Agricultural Products Standard. Bulletin No. 2012-84. NAQS, Gimcheon, Korea p. 91-92.
  17. Ryu, J.S., M.K. Kim, S.H. Cho, Y.C. Yun, W.M. Seo, and H.S. Lee. 2005. Optimal $CO_{2}$ level for cultivation of Pleurotus eryngii. J. Mushroom Sci. Prod. 3:95-99.
  18. Ryu, J.S., M.K. Kim, K.W. Song, S.D. Lee, C.H. Lee, C.W. Rho, and H.S. Lee. 2006. The study of quality standard of Pleurotus eryngii. J. Mushroom Sci. Prod. 4:129-134.
  19. Seginer, I. 2003. A dynamic model for nitrogen-stressed lettuce. Ann. Bot. 91:623-635. https://doi.org/10.1093/aob/mcg069
  20. Son, J.E. and J.S. Park. 2001. $NO_{2}$ Absorption and physiological response of lettuce in a semi-closed plant production system. J. Bio-Env. Con. 10:207-212.
  21. Son, J.E., J.S. Park, and H.Y. Park. 1999. Analysis of carbon dioxide changes in urban-type plant factory system. Hort. Environ. Biotechnol. 40:205-208.
  22. Tani, A. and Y. Kitaya. 1993. Introduction of the papers related to a closed ecological life support system (CELSS) in the world space congress '92'. Environ. Control Biol. 3:119-122.
  23. Thavivongse, S., and M. Buppachat. 2013. Grey oyster mushroom for food security versus $CO_{2}$ emission. J. Environ. Res. Develop. 7:1363-1368.
  24. Yang, J., J.Y. Zhao, H. Yu, L. Tang, and R. Wang. 2012. Mathematical study of the effects of temperature and humidity on the mycelium growth of Pleurotus eryngii. 2012 First Intl. Conf. Agro-Geoinformatics p. 1-5.

Cited by

  1. 농경지 온실가스 배출 산정을 위한 챔버법: 고찰 vol.20, pp.1, 2014, https://doi.org/10.5532/kjafm.2018.20.1.34