과제정보
연구 과제 주관 기관 : UGC
참고문헌
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture", Adv. Appl. Mech., 7(1), 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
- Bazant ZP (2002), "Concrete fracture models: testing and practice", Eng. Frac. Mech., 69, 165-205. https://doi.org/10.1016/S0013-7944(01)00084-4
- Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
- Bazant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986), "Determination of fracture properties from size effect tests", J. Struct. Eng. ASCE, 112(2), 289-307. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(289)
- Carpinteri, A. (1989), "Cusp catastrophe interpretation of fracture instability", J. Mech. Phy. Solids, 37(5), 567-582. https://doi.org/10.1016/0022-5096(89)90029-X
- Carpinteri, A., Cornetti, P., Barpi, F. and Valente, S. (2003), "Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory", Eng. Fract. Mech., 70, 1809-1839. https://doi.org/10.1016/S0013-7944(03)00126-7
- Carpinteri, A., Cornetti P. and Puzzi, S. (2006), "Scaling laws and multiscale approach in the mechanics of heterogeneous and disordered materials", Appl. Mech. Rev. ASME, 59, 283-305. https://doi.org/10.1115/1.2204076
- Cusatis, G. and Schauffert, E.A. (2009), "Cohesive crack analysis of size effect", Eng. Fract. Mech., 76, 2163-2173. https://doi.org/10.1016/j.engfracmech.2009.06.008
- De Borst, R. (2003), "Numerical aspects of cohesive-zone models", Eng Fract. Mech., 70, 1743-1757. https://doi.org/10.1016/S0013-7944(03)00122-X
- Dugdale, D. S. (1960), "Yielding of steel sheets containing slits", J. Mech. Phy. Solids, 8 (2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- Elices M., Guinea, G.V., Gomez, J. and Planas, J. (2002), "The cohesive cone model: advantages", limitations and challenges, Eng. Fract. Mech., 69, 137-163. https://doi.org/10.1016/S0013-7944(01)00083-2
- Elices, M. and Planas, J. (1996), "Fracture mechanics parameters of concrete an overview", Adv Cem Based Mater., 4, 116-127.
- Elices, M., Rocco, C. and Rosello, C. (2009), "Cohesive crack modeling of a simple concrete: Experimental and numerical results", Eng. Fract. Mech., 76, 1398-1410. https://doi.org/10.1016/j.engfracmech.2008.04.010
- Glinka, G. and Shen, G. (1991), "Universal features of weight functions for cracks in Mode I", Eng. Fract. Mech., 40, 1135-1146. https://doi.org/10.1016/0013-7944(91)90177-3
- Guinea, G.V. (1995), "Modelling the fracture of concrete: the cohesive crack", Mater. Struct., 28(4), 187-194. https://doi.org/10.1007/BF02473248
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6,773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Hu, S. and Lu, J. (2012), "Experimental research and analysis on Double-K fracture parameters of concrete", Adv. Sci. Lett., 12 (1), 192-195. https://doi.org/10.1166/asl.2012.2806
- Hu, S., Mi, Z. and Lu, J. (2012), Effect of crack-depth ratio on double-K fracture parameters of reinforced concrete", Appl. Mech. Mater., 226-228, 937-941. https://doi.org/10.4028/www.scientific.net/AMM.226-228.937
- Jenq, Y.S. and Shah, S.P. (1985a), "Two parameter fracture model for concrete", J. Eng. Mech. ASCE, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
- Jenq, Y.S. and Shah, S.P. (1985b), "A fracture toughness criterion for concrete", Eng. Fract. Mech., 21, 1055-1069. https://doi.org/10.1016/0013-7944(85)90009-8
- Kaplan, M.F. (1961), "Crack propagation and the fracture of concrete", J. Am. Concrete Inst., 58(5), 591-610.
- Karihaloo, B.L. and Nallathambi, P. (1991), Notched Beam Test: Mode I Fracture Toughness, Fracture Mechanics Test methods for concrete, Report of RILEM Technical Committee 89-FMT (Edited by S.P. Shah and A. Carpinteri), Chamman & Hall, London, 1-86.
- Kim, J.K., Lee, Y. and Yi, S.T. (2004), "Fracture characteristics of concrete at early ages", Cement Concrete Res., 34, 507-519. https://doi.org/10.1016/j.cemconres.2003.09.011
- Kumar, S. and Barai, S.V. (2008a), "Influence of specimen geometry on determination of double-K fracture parameters of concrete: A comparative study", Int. J. Fract., 149, 47-66. https://doi.org/10.1007/s10704-008-9227-1
- Kumar, S. and Barai, S.V. (2008b), "Cohesive crack model for the study of nonlinear fracture behaviour of concrete", J. Inst. Engng. (India), CV 89 (Nov.), 7-15.
- Kumar, S. and Barai, S.V. (2009a), "Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function", Eng. Fract. Mech., 76, 935-948. https://doi.org/10.1016/j.engfracmech.2008.12.018
- Kumar, S. and Barai, S.V. (2009b), "Influence of loading condition and size-effect on the KR-curve based on the cohesive stress in concrete", Int. J. Fract., 156, 103-110. https://doi.org/10.1007/s10704-009-9349-0
- Kumar, S. and Barai, S.V. (2009c), "Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen", Sadhana-Acad. Proc. Eng. Sci., 36(6), 987-1015.
- Kumar, S. and Barai, S.V. (2010a), "Determining the Double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. Mater. Struct., 33(10), 645-660. https://doi.org/10.1111/j.1460-2695.2010.01477.x
- Kumar, S. and Barai, S.V. (2010b), "Size-effect prediction from the double-K fracture model for notched concrete beam", Int. J. Damage Mech., 19, 473-497. https://doi.org/10.1177/1056789508101187
- Kumar, S. and Barai, S.V. (2012), "Effect of loading condition, specimen geometry, size-effect and softening function on double-K fracture parameters of concrete", Sadhana-Academy Proceedings in Engineering Science, 37 ( Part 1), 3-15.
- Kumar, S. and Pandey, S.R. (2012), "Determination of double-K fracture parameters of concrete using splittension cube test", Comput. Concr. An Int. J., 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001
- Kumar, S., Pandey, S.R. and Srivastava, A.K.L. (2013), "Analytical methods for determination of double-K fracture parameters of concrete", Adv. Concrete Constr., 1(4), 319-340. https://doi.org/10.12989/acc2013.1.4.319
- Kwon, S.H., Zhao, Z. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38, 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014
- Murakami, Y. (1987), "Stress Intensity Factors Hand Book", (Committee on Fracture Mechanics, The Society of Materials Science, Japan) Vol-1, Pergamon Press, Oxford.
- Murthy, A.R., Iyer N.R. and Prasad, B.K.R (2012), "Evaluation of fracture parameters by Double-G, Double-K models and crack extension resistance for high strength and ultra high strength concrete beams", Comput. Mater.Continua, 31(3), 229-252.
- Nallathambi, P. and Karihaloo, B.L. (1986), "Determination of specimen-size independent fracture toughness of plain concrete", Mag. Concrete Res., 38(135), 67-76. https://doi.org/10.1680/macr.1986.38.135.67
- Park, K., Paulino, G.H. and Roesler, J.R. (2008), "Determination of the kink point in the bilinear softening model for concrete", Eng. Fract. Mech., 7, 3806-3818.
- Petersson, P.E. (1981), "Crack growth and development of fracture zone in plain concrete and similar materials", Report No. TVBM-100, Lund Institute of Technology.
- Planas, J., Elices, M., Guinea, G.V., Gomez, F.J. Cendon, D.A. and Arbilla, I. (2003), Generalizations and specializations of cohesive crack models, Eng. Fract. Mech., 70, 1759-1776. https://doi.org/10.1016/S0013-7944(03)00123-1
- Planas, J. and Elices, M. (1991), "Nonlinear fracture of cohesive material", Int. J. Fract., 51, 139-157.
- Raghu Prasad, B.K. and Renuka Devi, M.V. (2007), "Extension of FCM to plain concrete beams with vertical tortuous cracks", Eng. Fract. Mech., 74, 2758-2769. https://doi.org/10.1016/j.engfracmech.2007.01.007
- Reinhardt, H.W., Cornelissen, H.A.W. and Hordijk, D.A. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., ASCE, 112(11), 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462)
- RILEM Draft recommendation (50-FMC) (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams", Mater. Struct., 18, 285-290. https://doi.org/10.1007/BF02472917
- RILEM Draft Recommendations (TC89-FMT) (1990), "Determination of fracture parameters (KIcs and CTODc) of plain concrete using three-point bend tests", Mater. Struct., 23(138), 457-460. https://doi.org/10.1007/BF02472029
- Roesler J., Paulino, G.H., Park, K. and Gaedicke, C. (2007), "Concrete fracture prediction using bilinear softening", Cement Concrete Compos., 29, 300-312. https://doi.org/10.1016/j.cemconcomp.2006.12.002
- Tada, H., Paris, P.C. and Irwin, G. (2000), The Stress Analysis of Cracks Handbook, Paris Productions Incorporated, St. Louis, Missouri, USA.
- Xu, S. and Reinhardt, H.W. (1998), "Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture", Int. J. Fract., 92, 71-99. https://doi.org/10.1023/A:1007553012684
- Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasibrittle materials, Part I: Experimental investigation of crack propagation", Int. J. Fract., 98, 111-149. https://doi.org/10.1023/A:1018668929989
- Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasibrittle materials, Part II: analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fract., 98, 151-77. https://doi.org/10.1023/A:1018740728458
- Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasibrittle materials, Part III: compact tension specimens and wedge splitting specimens", Int. J. Fract., 98, 179-193. https://doi.org/10.1023/A:1018788611620
- Xu, S. and Reinhardt, H.W. (2000), "A simplified method for determining double-K fracture meter parameters for three-point bending tests", Int. J. Fract., 104, 181-209. https://doi.org/10.1023/A:1007676716549
- Xu, S. and Zhang, X. (2008), "Determination of fracture parameters for crack propagation in concrete using an energy approach", Eng. Fract. Mech., 75, 4292-4308. https://doi.org/10.1016/j.engfracmech.2008.04.022
- Xu, S. and Zhu, Y. (2009), "Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar", Int. J. Fract., 157, 33-43. https://doi.org/10.1007/s10704-009-9315-x
- Yu, K. and Lu, Z. (2013), "Determining residual double-K fracture toughness of post fire concrete using analytical and weight function method", Mater. Struct., DOI 10.1617/s11527-013-0097-2.
- Zhang, X. and Xu, S. (2011), "A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis", Eng. Fract. Mech., 78, 2115-2138. https://doi.org/10.1016/j.engfracmech.2011.03.014
- Zhang, X., Xu, S. and Zheng, S. (2007), "Experimental measurement of double-K fracture parameters of concrete with small-size aggregates", Front. Archit. Civ. Eng. China, 1(4), 448-457. https://doi.org/10.1007/s11709-007-0061-8
- Zhao, Y. and Xu, S. (2002), "The influence of span/depth ratio on the double-K fracture parameters of concrete", J China Three Georges Univ. (Nat. Sci.), 24(1), 35-41.
- Zhao, Z., Kwon, S.H. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38, 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017
- Zi. G. and Bazant, Z.P. (2003), "Eignvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites", Int. J. Eng. Sci., 41, 1519-1534. https://doi.org/10.1016/S0020-7225(03)00033-8
피인용 문헌
- Modeling of fracture parameters for crack propagation in recycled aggregate concrete vol.106, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.101
- Effect of cracks on concrete diffusivity: A meso-scale numerical study vol.108, 2015, https://doi.org/10.1016/j.oceaneng.2015.08.054
- Failure Behavior of Tunnel Lining Caused by Concrete Cracking: A Case Study vol.19, pp.4, 2014, https://doi.org/10.1007/s11668-019-00718-7
- Fracture behaviors of tunnel lining caused by multi-factors: A case study vol.8, pp.4, 2014, https://doi.org/10.12989/acc.2019.8.4.269
- A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model vol.8, pp.4, 2014, https://doi.org/10.12989/acc.2019.8.4.285
- Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2139054