Acknowledgement
Supported by : Ehime University
References
- Bucknall, C.B. (2007), "New criterion for craze initiation", Polymer, 48, 1030-1041. https://doi.org/10.1016/j.polymer.2006.12.033
- Bucknall, C.B. (2012), "Role of surface chain mobility in crazing", Polymer, 53, 4778-4786. https://doi.org/10.1016/j.polymer.2012.08.034
- Fang, QZ., Wang, T.J. and Li, H.M. (2008), "Overload-induced retardation of fatigue crack growth in polycarbonate", Int. J. Fatigue, 30, 1419-1429. https://doi.org/10.1016/j.ijfatigue.2007.10.005
- Fang, Q.Z., Wang, T.J. and Li, H.M. (2007), "Overload effect of the fatigue crack propagation of PC/ABS alloy", Polymer 48, 6691-6706. https://doi.org/10.1016/j.polymer.2007.08.048
- James, M.N., Christopher, C.J., Lu, Y. and Patterson, E.A. (2012), "Fatigue crack growth and craze-induced crack tip shielding in polycarbonate", Polymer, 53, 1558-1570. https://doi.org/10.1016/j.polymer.2012.01.032
- Krongauz, V.A., Bosnjak, C.P. and Chudnovsky, A. (2009), "Use of photochromic spiropyran as a molecular probe of large strain in polycarbonate", High Energy Chem., 43, 400-405. https://doi.org/10.1134/S0018143909050117
- Kumai, S., Hu, J., Higo, Y. and Nunomura, S. (1996), "Effects of dendrite cell size and particle distribution on the near-threshold fatigue crack growth behavior of cast Al-SiCp composites", Acta Mater., 44, 2249-2257. https://doi.org/10.1016/1359-6454(95)00357-6
- Li, X., Hristov, H.A., Yee, A.F. and Gidley, D.W. (1995), "Influence of cyclic fatigue on the mechanical properties of amorphous polycarbonate", Polymer, 36, 759-765. https://doi.org/10.1016/0032-3861(95)93105-U
- Mills, N.J. and Walker, N. (1980), "Fatigue crack initiation in glassy plastics in high strain fatigue tests", J. Mater. Sci., 15, 1832-1840. https://doi.org/10.1007/BF00550604
- Mishnaevsky, Jr. L. and Brondsted, P. (2007), "Modeling of fatigue damage evolution on the basis of the kinetic concept of strength", Int. J. Fract. , 144, 149-158. https://doi.org/10.1007/s10704-007-9086-1
-
Okayasu, M. and Yoshie, S. (2010), "Mechanical Properties of
$Al-Si_{13}-Ni_{1.4}-Mg_{1.4}-Cu_1 $ Alloys Produced by the Ohno Continuous Casting Process", Mat. Sci. Eng. A, 527, 3120-3126. https://doi.org/10.1016/j.msea.2010.01.071 - Pitman, G. and Ward, I.M. (1980), "The molecular weight dependence of fatigue crack propagation in polycarbonate", J. Mater. Sci., 15, 635-645. https://doi.org/10.1007/BF00551728
- Pruitt, L. and Rondinone, D. (1996), "The effect of specimen thickness and stress ratio on the fatigue behavior of polycarbonate", Polym. Eng. Sci., 36, 1300-1305. https://doi.org/10.1002/pen.10524
- Puchi-Cabrera, E.S., Staia, M.H., Quinto, D.T., Villalobos-Gutierres, C. and Ochoa-Perez, E. (2007), "Fatigue properties of a SAE4340 steel coated with TiCN by PAPVD", Int. J. Fatigue, 29, 471-480. https://doi.org/10.1016/j.ijfatigue.2006.05.003
- Radon, J.C., Chauban, P. and Culver, L.E. (1976), "The influence of temperature and frequency on fatigue crack propagation in polymers", Colloid Polym. Sci., 254, 382-388. https://doi.org/10.1007/BF01382119
- Rae, P.J., Brown, E.N. and Orler, E.B. (2007), "The mechanical properties of poly (ether - ether - ketone)(PEEK) with emphasis on the large compressive strain response", Polymer, 48, 598-615. https://doi.org/10.1016/j.polymer.2006.11.032
- Singh, K.D., Parry, M.R. and Sinclair, I. (2011), "Variable amplitude fatigue growth behavior -a short overview", J. Mech. Sci. Tech., 25, 663-673. https://doi.org/10.1007/s12206-011-0132-6
- Skibo, M.D., Hertzberg, R.W., Manson, J.A. and Kim, S.L. (1977), "On the generality of discontinuous fatigue crack growth in glassy polymers", J. Mater. Sci., 15, 531-542.
- Wang, B., Lu, H., Tan, G. and Chen, W. (2003), "Strength of damaged polycarbonate after fatigue", Theor. Appl. Fract. Mech. 39, 163-168. https://doi.org/10.1016/S0167-8442(02)00156-8
Cited by
- Design and analysis of low velocity impact on thermoplastic hat section with curvilinear profile vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.065