DOI QR코드

DOI QR Code

세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process

  • 황용선 (중앙대학교 공과대학 화학신소재공학부) ;
  • 김주헌 (중앙대학교 공과대학 화학신소재공학부) ;
  • 조원철 (중앙대학교 공과대학 사회기반시스템학부)
  • Hwang, Yongseon (School of Chemical Engineering & Materials Science, Chung-Ang University) ;
  • Kim, Jooheon (School of Chemical Engineering & Materials Science, Chung-Ang University) ;
  • Cho, WonChul (School of Civil and Environmental Engineering, Urban Design and Studies, Chung-Ang University)
  • 투고 : 2014.04.24
  • 심사 : 2014.05.19
  • 발행 : 2014.11.25

초록

세라믹 방열 복합체의 특성 비교를 위해 casting method로 제작하였으며, 이들의 광학적 이미지와 단면 FE-SEM 분석을 실시하였다. 각각의 복합체의 열전도성 특성을 비교 분석하였으며, silicon carbide(SiC)의 분산도 문제를 해결하기 위해 wetting process를 도입하여 SiC/epoxy 복합체를 제작하였다. 기존의 방법에서 발견된 복합체 내공극과 분산도 문제가 wetting process를 통해 향상되었으며, 충전제 함량에 따른 열전도성 특성을 분석하였다. SiC 복합체의 함량에 따른 공극률 해석을 통해 70 wt% SiC 복합체에서 가장 높은 열전도도 값을 보였으며, 이들의 단면 FE-SEM 분석을 통해 복합체 내의 충전제 분산도를 확인하였다.

Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. W. Lin, K. S. Moon, and C. P. Wong, Adv. Mater., 21, 2421 (2009). https://doi.org/10.1002/adma.200803548
  2. Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, and M. Lisunova, Compos. Sci. Technol., 68, 1981 (2008). https://doi.org/10.1016/j.compscitech.2007.11.014
  3. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, J. Phys. Chem. C, 111, 7565 (2007). https://doi.org/10.1021/jp071761s
  4. S. V. Garimella, A. S. Fleischer, J. Y. Murthy, A. Keshavarzi, R. Prasher, and C. Patel, IEEE Trans. Compon. Packag. Technol., 31, 801 (2008). https://doi.org/10.1109/TCAPT.2008.2001197
  5. R. Prasher, Proc. IEEE, 94, 1571 (2006). https://doi.org/10.1109/JPROC.2006.879796
  6. F. Sarvar, D. C. Whalley, D. A. Hutt, P. J. Palmer, and N. J. Teh, Microelectron. Int., 24, 66 (2007). https://doi.org/10.1108/13565360710818439
  7. Z. Shi, M. Radwan, S. Kirihara, Y. Miyamoto, and Z. Jin, Appl. Phys. Lett., 95, 224104 (2009). https://doi.org/10.1063/1.3271028
  8. T. L. Li and S. L. C. Hsu, J. Phys. Chem. B, 114, 6825 (2010). https://doi.org/10.1021/jp101857w
  9. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg, Adv. Funct. Mater., 19, 1857 (2009). https://doi.org/10.1002/adfm.200801435
  10. F. Yang, X. Zhao, and P. Xiao, J. Eur. Ceram. Soc., 30, 3111 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.007
  11. W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, Mater. Res. Bull., 42, 1863 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047
  12. T. Terao, C. Zhi, Y. Bando, M. Mitome, C. Tang, and D. Golberg, J. Phys. Chem. C, 114, 4340 (2010).
  13. T. Zhou, X. Wang, G. U. Mingyuan, and X. Liu, Polymer, 49, 4666 (2008). https://doi.org/10.1016/j.polymer.2008.08.023
  14. S. Vyazovkin and N. Sbirrazzuoli, Macromol. Chem. Phys., 201, 199 (2000). https://doi.org/10.1002/(SICI)1521-3935(20000201)201:2<199::AID-MACP199>3.0.CO;2-N

피인용 문헌

  1. Thermal conductivity of Graphene-polymer composites: implications for thermal management vol.56, pp.6, 2014, https://doi.org/10.1007/s00231-020-02821-0