DOI QR코드

DOI QR Code

Synthesis and Curing Behaviors of Polyisoimide Oligomers with Ethynyl End Groups

Ethynyl 말단기를 갖는 Polyisoimide 올리고머의 합성 및 이들의 경화거동에 관한 연구

  • Choi, Seok Woo (School of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Bo Ock (School of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Ji-Heung (School of Chemical Engineering, Sungkyunkwan University) ;
  • Nam, Sung Woo (School of Chemical Engineering, Sungkyunkwan University) ;
  • Jeon, Boong Soo (School of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, Young Jun (School of Chemical Engineering, Sungkyunkwan University)
  • 최석우 (성균관대학교 화학공학부) ;
  • 김보옥 (성균관대학교 화학공학부) ;
  • 김지흥 (성균관대학교 화학공학부) ;
  • 남성우 (성균관대학교 화학공학부) ;
  • 전붕수 (성균관대학교 화학공학부) ;
  • 김영준 (성균관대학교 화학공학부)
  • Received : 2014.04.17
  • Accepted : 2014.06.24
  • Published : 2014.11.25

Abstract

Acetylenic or phenylethynyl end-capped polyisoimide oligomers ($M_w$ 2500 g/mol, 5000 g/mol) based upon 4,4'-diamino diphenyl ether (4,4'-ODA)/4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-ODA/3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA) were synthesized by using 4-ethynylaniline (4-EA) or 4-phenylethynyl phthalic anhydride (4-PEPA) as an end capper. The incorporation of ethynyl groups were confirmed by FTIR spectroscopy. The isomerization temperature was influenced by molecular weight as well as the backbone structure of polyisoimides oligomers. Thus, polyisoimide oligomers with molecular weight of 2500 g/mol was found to be imidized at temperature $10^{\circ}C$ lower than that for the oligomers with molecular weight of 5000 g/mol. The crosslinking reaction of ethynyl groups occurred at a higher temperature than that for the isoimide/imide isomerization reaction. These two reactions were totally or partially overlapped on the DSC thermograms for the polyisoimide oligomer end-capped with 4-EA. Kinetics of thermal imidization and crosslinking reactions for the 4,4'-ODA/ODPA polyisoimide oligomers end-capped with 4-PEPA were investigated by performing dynamic DSC experiments at heating rate of $10^{\circ}C/min$. The activation energy and pre-exponential factors were 141 kJ/mol and $1.45{\times}10^{13}min^{-1}$ for the imidization reaction and 177 kJ/mol and $2.90{\times}10^{13}min^{-1}$ for the crosslinking reaction, respectively.

4-ethynylaniline(4-EA) 혹은 4-phenylethynyl phthalic anhydride(4-PEPA)을 end-capper로 사용하여 분자량이 2500 g/mol 혹은 5000 g/mol로 조절되고, 반응성 ethynyl 기를 갖는 4,4'-diamino diphenyl ether(4,4'-ODA)/3,3',4,4'-benzophenone tetracarboxylic acid dianhydride(BTDA), 4,4'-ODA/4,4'-oxydiphthalic anhydride(ODPA)계 폴리아이소이미드 올리고머를 합성하여 이들의 중합 및 경화거동을 연구하였다. FTIR 분광분석을 통하여 이들 폴리아이소이미드 올리고머 말단에 반응성 ethynyl 기가 포함되어 있음을 확인할 수 있었다. 이미드화 반응은 폴리아이소이미드 올리고머의 화학구조에도 영향을 받을 뿐 아니라 올리고머의 분자량에도 영향을 받아 분자량 2500 g/mol 올리고머가 5000 g/mol 올리고머보다 대략 $10^{\circ}C$ 정도 낮은 온도에서 이미드화 반응이 일어났다. Ethynyl기의 가교반응은 이미드화 반응보다 높은 온도에서 일어났으며 4-EA로 end-cap된 폴리아이소이미드 올리고머에 대해서는 이 두 반응이 DSC 그래프에서 겹쳐서 나타났다. 4-PEPA로 end-cap된 4,4'-ODA/ODPA 폴리아이소이미드 올리고머에 대해 등 속도 가열 DSC 실험을 통해 이미드화 반응 및 가교반응에 대한 활성화 에너지와 지수앞인자를 구하였다. 이미드화 반응에 대한 활성화 에너지는 141 kJ/mol, 지수앞인자 값은 $1.45{\times}10^{13}min^{-1}$, 가교반응에 대한 활성화 에너지는 177 kJ/mol, 지수앞인자 값은 $2.90{\times}10^{13}min^{-1}$이 얻어졌다.

Keywords

References

  1. Y. Zhang, J. Shen, Q. Zhang, Z. Xu, Yeung, W. K. Kelvin, and C. Yi, Sci. Adv. Mater., 6, 44 (2014). https://doi.org/10.1166/sam.2014.1679
  2. A. Pasahan, "Sensor Application of Polyimide", in High Performance Polymers-Polyimides Based: From Chemistry to Applications, M. J. M. Abadie, Editor, InTech, Rijeka, Croatia, p 199 (2012).
  3. Y. J. Kim, T. E. Glass, G. D. Lyle, and J. E. McGrath, Macromolecules, 26, 1344 (1993). https://doi.org/10.1021/ma00058a024
  4. T. Seckin, N. Kivilcim, and S. Koytepe, Polym.-Plast. Technol., 52, 1368 (2013). https://doi.org/10.1080/03602559.2013.820747
  5. M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci.; Part B: Polym. Phys., 29, 1203 (1991).
  6. L. W. Frost and J. Kesse, J. Polym. Sci.; Part A: Polym. Chem., 11, 609 (1967).
  7. F. W. Mercer, V. N. Reddy, and M. T. Mckenzie, High Perform. Polym., 7, 237 (1995). https://doi.org/10.1088/0954-0083/7/2/006
  8. Y. Echigo, S. Okamoto, and N. Miki, J. Polym. Sci.; Part A: Polym. Chem., 35, 3335 (1997). https://doi.org/10.1002/(SICI)1099-0518(19971115)35:15<3335::AID-POLA28>3.0.CO;2-B
  9. H. Seino, O. HAba, M. Ueda, and A. Mochizuki, Polymer, 40, 551(1999). https://doi.org/10.1016/S0032-3861(98)00329-2
  10. Y. J. Kim, J. H. Kim, and J. C. Won, High Perform. Polym., 17, 19 (2005).
  11. A. Mochizuki, K. YAmada, M. Ueda, and R. Yokota, Chem. Lett., 4, 333 (1997).
  12. K. Kurita, Y. Suzuki, T. Enari, M. Kikuchi, S. Nishimura, and S. Ishii, Macromolecules, 28, 1801 (1995). https://doi.org/10.1021/ma00110a012
  13. B. Liu, M. Ji, F. Lin, and S. Yang, High Perform. Polym., 25, 225 (2013). https://doi.org/10.1177/0954008312460412
  14. C. Gong, Q. Luo, Y. Li, M. Giotto, N. E. Cipollini, Y. Zhiwei, R. A. Weiss, and D. A. Scola, J. Polym. Sci.; Part A: Polym. Chem., 48, 3950 (2010). https://doi.org/10.1002/pola.24178
  15. M. E. Wright, D. A. Schorzman, and A. M. Berman, Macromolecules, 35, 6550 (2002). https://doi.org/10.1021/ma020145l
  16. Y. J. Kim, G. I. Son, and J. H. Kim, Polym. Int., 51, 379 (2002). https://doi.org/10.1002/pi.861
  17. R. W. Snyder and C. W. Sheen, Appl. Spectrosc., 42, 655 (1988). https://doi.org/10.1366/0003702884429300
  18. H. E. Kissinger, Anal. Chem., 29, 1702 (1957). https://doi.org/10.1021/ac60131a045
  19. J. H. Flynn and L. A. Wall, J. Polym. Sci.; Part C: Polym. Lett., 4, 323 (1996).