DOI QR코드

DOI QR Code

Residual Stress Behavior and Characterization of Polyimide Crosslinked Networks via Ring-opening Metathesis Polymerization

개환 복분해 중합을 통한 가교형 폴리이미드 박막의 잔류응력 거동 및 특성 분석

  • Nam, Ki-Ho (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jongchul (Department of Packaging, Yonsei University) ;
  • Jang, Wonbong (Department of R&D, LG Display) ;
  • Han, Haksoo (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 남기호 (연세대학교 공과대학 화공생명공학과) ;
  • 서종철 (연세대학교 과학기술대학 패키징학과) ;
  • 장원봉 (엘지디스플레이(주)) ;
  • 한학수 (연세대학교 공과대학 화공생명공학과)
  • Received : 2014.04.03
  • Accepted : 2014.05.17
  • Published : 2014.11.25

Abstract

Crosslinked polyimides (PIs) were synthesized by reacting 4,4'-(hexafluoroisopropylidene)-diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFDB) with various ratios of the cross-linkable, end-capping agent cis-1,2,3,6-tetrahydrophthalic anhydride (CDBA) via ring-opening metathesis polymerization. Residual stress behaviors were investigated in-situ during thermal imidization of the crosslinked PI precursors using a thin film stress analyzer (TFSA) by wafer bending method. The thermal properties were investigated via differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA). The optical properties were measured by ultraviolet-visible spectrophotometer (UV-vis) and spectrophotometry. All properties were interpreted with respect to their morphology of crosslinked networks. With increasing the amounts of the end-capping agent, the residual stress decreased from 27.9 to -1.3 MPa, exhibited ultra-low stress and high thermal properties. The minimized residual stress and enhanced thermal properties of the crosslinked PI makes them potential candidates for versatile high-density multi-layer structure applications.

본 연구에서는 미세 전자 소자용 절연박막 및 차세대 플렉시블 디스플레이 기판으로서 사용이 기대되는 폴리이미드(PI)에 개환 복분해 중합(ring-opening metathesis polymerization)이 가능한 환형 말단 캡핑제(end-capping agent)인 cis-1,2,3,6-tetrahydrophthalic anhydride(CDBA)로 사슬 말단에 가교 반응이 된 가교형 폴리이미드를 합성하였다. 말단 캡핑제의 조성비에 따른 가교형 폴리이미드 박막의 잔류응력 거동은 thin film stress analyzer(TFSA)를 이용한 wafer bending mothod로 온도에 따라 연속적인 거동을 in-situ로 측정하였다. 열특성은 시차 주사 열량계(DSC), 열기계 분석기(TMA) 및 열 중량 분석기(TGA)를 이용하여 측정하였고, 광학 특성은 자외선/가시광선 분광광도계(UV-vis)와 색차계(spectrophotometer)를 이용하였으며, 네트워크 구조의 모폴로지(morphology) 변화를 통해 해석하였다. 말단 캡핑제의 조성비가 증가함에 따라 잔류응력은 27.9에서 -1.3 MPa로 초저응력 및 향상된 열 특성을 나타내었으나, 광학 특성은 감소됨을 보였다. 가교형 폴리이미드 박막의 우수한 특성 발현은 고집적도 다층 구조의 안정성 및 신뢰도가 요구되는 분야의 응용성이 확대될 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. S. L. Ma, Y. S. Kim, J. H. Lee, J. S. Kim, I. Kim, and J. C. Won, Polymer(Korea), 29, 204 (2005).
  2. I.-H. Tseng, Y.-F. Liao, J.-C. Chiang, and M.-H. Tsai, Mater. Chem. Phys., 136, 247 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.061
  3. M. K. Kovalev, F. Kalinina, D. A. Androsov, and C. Cho, Polymer, 54, 127 (2013). https://doi.org/10.1016/j.polymer.2012.11.051
  4. G. J. Shin, J. H. Chi, W.-C. Zin, T. H. Chang, M. H. Ree, and J. C. Jung, Polymer(Korea), 30, 97 (2006).
  5. Y.-H. Yu, J.-M. Yeh, S.-J. Liou, C.-L. Chen, D. J. Liaw, and H. Y. Lu, J. Appl. Polym. Sci., 92, 3573 (2004). https://doi.org/10.1002/app.20400
  6. H. Wei, X. Fang, Y. Han, B. Hu, and Q. Yan, Eur. Polym. J., 46, 246 (2010). https://doi.org/10.1016/j.eurpolymj.2009.10.025
  7. Y. Kim and J.-H. Chang, Macromol. Res., 21, 228 (2013). https://doi.org/10.1007/s13233-013-1072-z
  8. D.-S. Wuu, T.-N. Chen, E. Lay, C.-H. Liu, H.-F. Wei, L.-Y. Jiang, H.-U. Lee, and Y.-Y. Chang, J. Electrochem. Soc., 157, C47 (2010). https://doi.org/10.1149/1.3261761
  9. B. Y. Myung, J. S. Kim, J. J. Kim, and T. H. Yoon, J. Polym. Sci., Part A: Polym. Chem., 41, 3361 (2003). https://doi.org/10.1002/pola.10924
  10. J.-S. Park and J.-H. Chang, Polymer(Korea), 32, 580 (2008).
  11. M. Koo, J.-S. Bae, S. E. Shim, D. Kim, D.-G. Nam, J.-W. Lee, G.- W. Lee, J. H. Yeum, and W. Oh, Colloid Polym. Sci., 289, 1503 (2011). https://doi.org/10.1007/s00396-011-2469-x
  12. F. Moghadam and K. Moghadam, Solid State Technol., 27, 149 (1984).
  13. K. U. Jeong, J.-J. Kim, and T.-H. Yoon, Polymer, 42, 6019 (2001). https://doi.org/10.1016/S0032-3861(01)00012-X
  14. D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Prog. Polym. Sci., 37, 907 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
  15. T. Sutthasupa, K. Terada, F. Sanda, and T. Masuda, J. Polym. Sci., Part A: Polym. Chem., 44, 5337 (2006). https://doi.org/10.1002/pola.21580
  16. U. Min and J.-H. Chang, Polymer(Korea), 34, 495 (2010).
  17. M. Ree, T. L. Nunes, G. Czornyj, and W. Volksen, Polymer, 33, 1228 (1992). https://doi.org/10.1016/0032-3861(92)90768-R
  18. H. Chung, J. Lee, J. Hwang, and H. Han, Polymer, 42, 7893 (2001). https://doi.org/10.1016/S0032-3861(01)00214-2
  19. H. Chung, C. Lee, and H. Han, Polymer, 42, 319 (2001). https://doi.org/10.1016/S0032-3861(00)00341-4
  20. W. Jang, J. Seo, C. Lee, S.-H. Paek, and H. Han, J. Appl. Polym. Sci., 113, 976 (2009). https://doi.org/10.1002/app.29558
  21. M.-H. Park, S.-J. Yang, W. Jang, and H. Han, Korean Chem. Eng. Res., 43, 305 (2005).
  22. M. Ree, K. Kim, S. H. Woo, and H. Chang, J. Appl. Phys., 81, 698 (1997). https://doi.org/10.1063/1.364210
  23. W. Jang, H.-S. Lee, S. Lee, S. Choi, D. Shin, and H. Han, Mater. Chem. Phys., 104, 342 (2007). https://doi.org/10.1016/j.matchemphys.2007.03.025
  24. W. Jang, D. Shin, S. Choi, S. Park, and H. Han, Polymer, 48, 2130 (2007). https://doi.org/10.1016/j.polymer.2007.02.023
  25. W. Jang, M. Seo, J. Seo, S. Park, and H. Han, Polym. Int., 57, 350 (2008). https://doi.org/10.1002/pi.2359
  26. C. Bao, Y. Guo, L. Song, and Y. Hu, J. Mater. Chem., 21, 13924 (2011).
  27. J. Shi, Y. Wang, L. Liu, H. Bai, J. Wu, C. Jiang, and Z. Zhou, Mat. Sci. Eng. A-Struct., 512, 109 (2009). https://doi.org/10.1016/j.msea.2009.01.021
  28. G. Hu, Y. Ma, and B. Wang, Mat. Sci. Eng. A-Struct., 504, 8 (2009). https://doi.org/10.1016/j.msea.2008.12.025
  29. J. Y. Lee and J. Jang, Polymer, 47, 3036 (2006). https://doi.org/10.1016/j.polymer.2006.03.009
  30. J. Fan, X. Hu, and C. Y. Yue, Polym. Int., 52, 15 (2003). https://doi.org/10.1002/pi.962
  31. T. Sasaki, H. Moriuchi, S. Yano, and R. Yokota, Polymer, 46, 6968 (2005). https://doi.org/10.1016/j.polymer.2005.06.052
  32. J.-G. Liu, X.-J. Zhao, H.-S. Li. Fan, and S.-Y. Yang, High Perform. Polym., 18, 851 (2006). https://doi.org/10.1177/0954008306063639
  33. G. Maier, Prog. Polym. Sci., 26, 3 (2001). https://doi.org/10.1016/S0079-6700(00)00043-5