DOI QR코드

DOI QR Code

Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites

유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향

  • ;
  • ;
  • ;
  • 최형진 (인하대학교 고분자공학과)
  • Received : 2014.03.22
  • Accepted : 2014.04.28
  • Published : 2014.11.25

Abstract

Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

Keywords

References

  1. J. H. Chen, E. Schulz, J. Bohse, and G. Hinrichsen, Compos.: A, 30, 747 (1999). https://doi.org/10.1016/S1359-835X(98)00188-2
  2. A. C. Garg and Y. W. Mai, Compos. Sci. Technol., 31, 179 (1988). https://doi.org/10.1016/0266-3538(88)90009-7
  3. T. Adachi, M. Osaki, W. Araki, and S. C. Kwon, Acta Mater., 56, 2101 (2008). https://doi.org/10.1016/j.actamat.2008.01.002
  4. S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, Compos.: B, 39, 933 (2008). https://doi.org/10.1016/j.compositesb.2008.01.002
  5. R. Bagheri, B. T. Marouf, and R. A. Pearson, J. Macromol. Sci. C: Polym. Rev., 49, 201 (2009).
  6. M. Arai, Y. Noro, K.-I. Sugimoto, and M. Endo, Compos. Sci. Technol., 68, 516 (2008). https://doi.org/10.1016/j.compscitech.2007.06.007
  7. N. A. Siddiqui, R. S. C. Woo, J. K. Kim, C. C. K. Leung, and A. Munir, Compos.: A, 38, 449 (2007). https://doi.org/10.1016/j.compositesa.2006.03.001
  8. M. H. Gabr, M. A. Elrahman, K. Okubo, and T. Fujii, Compos. Struct., 92, 1999 (2010). https://doi.org/10.1016/j.compstruct.2009.12.009
  9. B. Ashrafi, J. Guan, V. Mirjalili, Y. Zhang, L. Chun, P. Hubert, B. Simard, C. T. Kingston, O. Bourne, and A. Johnston, Compos. Sci. Technol., 71, 1569 (2011). https://doi.org/10.1016/j.compscitech.2011.06.015
  10. Y. Xu and S. V. Hoa. Compos. Sci. Technol., 68, 854 (2008). https://doi.org/10.1016/j.compscitech.2007.08.013
  11. H. Y. Liu, G. T. Wang, Y. W. Mai, and Y. Zeng, Compos.: B, 42, 2170 (2011). https://doi.org/10.1016/j.compositesb.2011.05.014
  12. M. Abadyan, V. Khademi, R. Bagheri, H. Haddadpour, M. A. Kouchakzadeh, and M. Farsadi, Mater. Des., 30, 1976 (2009). https://doi.org/10.1016/j.matdes.2008.09.001
  13. M. H. Gabr, M. A. Elrahman, K. Okubo, and T. Fujii, Compos.: A, 41, 1263 (2010). https://doi.org/10.1016/j.compositesa.2010.05.010
  14. S. Balakrishnan, P. R. Start, D. Raghavan, and S. D. Hudson, Polymer, 46, 11255 (2005). https://doi.org/10.1016/j.polymer.2005.10.053
  15. R. Thomas, Y. M. Ding, Y. L. He, L. Yang, P. Moldenaers, W. M. Yang, T. Czigany, and S. Thomas, Polymer, 49, 278 (2008). https://doi.org/10.1016/j.polymer.2007.11.030
  16. G. Tripathi and D. Srivastava, Mater. Sci. Eng. A, 496, 483 (2008). https://doi.org/10.1016/j.msea.2008.06.035
  17. N. Chikhi, S. Fellahi, and M. Bakar, Eur. Polym. J., 38, 251 (2002). https://doi.org/10.1016/S0014-3057(01)00194-X
  18. M. Abadyan, R. Bagheri, H. Haddadpour, and P. Motamedi, Mater. Des., 30, 3048 (2009). https://doi.org/10.1016/j.matdes.2008.12.012
  19. M. Abadyan, R. Bagheri, M. A. Kouchakzadeh, and S. A. Hosseini Kordkheili, Mater. Des., 32, 2900 (2011). https://doi.org/10.1016/j.matdes.2010.12.003
  20. J. K. Kim, C. Baillie, J. Poh, and Y. W. Mai, Compos. Sci. Technol., 43, 283 (1992). https://doi.org/10.1016/0266-3538(92)90099-O
  21. I. S. Seo, W. S. Chin, and D. G. Lee, Compos. Struct., 66, 533 (2004). https://doi.org/10.1016/j.compstruct.2004.04.076
  22. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, IEEE Trans. Instrum. Meas., 37, 789 (1989).
  23. G. Gkikas, N. M. Barkoula, and A. S. Paipetis, Compos.: B, 43, 2697 (2012). https://doi.org/10.1016/j.compositesb.2012.01.070
  24. V. D. Ramos, H. M. da Costa, V. L. P. Soares, and R. S. V. Nascimento, Polym. Test., 24, 387 (2005). https://doi.org/10.1016/j.polymertesting.2004.09.010
  25. M. Abadyan, V. Khademi, R. Bagheri, H. Haddadpour, M. A. Kouchakzadeh, and M. Farsadi, Compos. Mater. Des., 30, 1976 (2009).
  26. R. Velmurugan and S. Solaimurugan, Compos. Sci. Technol., 67, 61 (2007). https://doi.org/10.1016/j.compscitech.2006.03.032
  27. D. W. Y. Wong, L. Lin, P. T. McGrail, T. Peijs, and P. J. Hogg, Compos.: A, 41, 759 (2010). https://doi.org/10.1016/j.compositesa.2010.02.008

Cited by

  1. Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics vol.73, pp.5, 2014, https://doi.org/10.1007/s00289-015-1553-7
  2. Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica vol.59, pp.3, 2014, https://doi.org/10.1134/s0965545x17030026
  3. Improvement of the mode I interlaminar fracture toughness of glass fiber/epoxy composites using polystyrene electrospun nanofibres vol.75, pp.11, 2014, https://doi.org/10.1007/s00289-018-2308-z
  4. Enhancing mode I and II interlaminar fracture toughness of carbon fiber-filled epoxy-based composites using both rice husk silica and silk fibroin electrospun nanofibers vol.31, pp.9, 2019, https://doi.org/10.1177/0954008319840404
  5. Enhanced mode I interlaminar fracture toughness and mechanical properties of carbon fiber-filled vinyl ester resin-based composite by using both coal fly ash and nano-/micro-glass fiber vol.77, pp.1, 2014, https://doi.org/10.1007/s00289-019-02739-6
  6. Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness vol.28, pp.1, 2014, https://doi.org/10.1007/s13233-020-8010-7
  7. Environmentally sustainable rice husk ash reinforced cardanol based polybenzoxazine bio-composites for insulation applications vol.77, pp.5, 2014, https://doi.org/10.1007/s00289-019-02854-4
  8. Effects of DOPO-Grafted Epoxidized Soybean Oil on Fracture Toughness and Flame Retardant of Epoxy Resin/Rice Husk Silica Hybrid vol.28, pp.9, 2020, https://doi.org/10.1007/s13233-020-8102-4
  9. Silane coupling agent with amine group grafted nano/micro-glass fiber as novel toughener for epoxy resin: fabrication and mechanical properties vol.27, pp.12, 2014, https://doi.org/10.1080/09276440.2020.1729031
  10. Crosslinking, Mechanical Properties, and Antimicrobial Activity of Photocurable Diacrylate Urethane/ZnO-Ag Nanocomposite Coating vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/7387160
  11. Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder vol.333, pp.None, 2014, https://doi.org/10.1016/j.jclepro.2021.130222