References
- J. H. Chen, E. Schulz, J. Bohse, and G. Hinrichsen, Compos.: A, 30, 747 (1999). https://doi.org/10.1016/S1359-835X(98)00188-2
- A. C. Garg and Y. W. Mai, Compos. Sci. Technol., 31, 179 (1988). https://doi.org/10.1016/0266-3538(88)90009-7
- T. Adachi, M. Osaki, W. Araki, and S. C. Kwon, Acta Mater., 56, 2101 (2008). https://doi.org/10.1016/j.actamat.2008.01.002
- S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, Compos.: B, 39, 933 (2008). https://doi.org/10.1016/j.compositesb.2008.01.002
- R. Bagheri, B. T. Marouf, and R. A. Pearson, J. Macromol. Sci. C: Polym. Rev., 49, 201 (2009).
- M. Arai, Y. Noro, K.-I. Sugimoto, and M. Endo, Compos. Sci. Technol., 68, 516 (2008). https://doi.org/10.1016/j.compscitech.2007.06.007
- N. A. Siddiqui, R. S. C. Woo, J. K. Kim, C. C. K. Leung, and A. Munir, Compos.: A, 38, 449 (2007). https://doi.org/10.1016/j.compositesa.2006.03.001
- M. H. Gabr, M. A. Elrahman, K. Okubo, and T. Fujii, Compos. Struct., 92, 1999 (2010). https://doi.org/10.1016/j.compstruct.2009.12.009
- B. Ashrafi, J. Guan, V. Mirjalili, Y. Zhang, L. Chun, P. Hubert, B. Simard, C. T. Kingston, O. Bourne, and A. Johnston, Compos. Sci. Technol., 71, 1569 (2011). https://doi.org/10.1016/j.compscitech.2011.06.015
- Y. Xu and S. V. Hoa. Compos. Sci. Technol., 68, 854 (2008). https://doi.org/10.1016/j.compscitech.2007.08.013
- H. Y. Liu, G. T. Wang, Y. W. Mai, and Y. Zeng, Compos.: B, 42, 2170 (2011). https://doi.org/10.1016/j.compositesb.2011.05.014
- M. Abadyan, V. Khademi, R. Bagheri, H. Haddadpour, M. A. Kouchakzadeh, and M. Farsadi, Mater. Des., 30, 1976 (2009). https://doi.org/10.1016/j.matdes.2008.09.001
- M. H. Gabr, M. A. Elrahman, K. Okubo, and T. Fujii, Compos.: A, 41, 1263 (2010). https://doi.org/10.1016/j.compositesa.2010.05.010
- S. Balakrishnan, P. R. Start, D. Raghavan, and S. D. Hudson, Polymer, 46, 11255 (2005). https://doi.org/10.1016/j.polymer.2005.10.053
- R. Thomas, Y. M. Ding, Y. L. He, L. Yang, P. Moldenaers, W. M. Yang, T. Czigany, and S. Thomas, Polymer, 49, 278 (2008). https://doi.org/10.1016/j.polymer.2007.11.030
- G. Tripathi and D. Srivastava, Mater. Sci. Eng. A, 496, 483 (2008). https://doi.org/10.1016/j.msea.2008.06.035
- N. Chikhi, S. Fellahi, and M. Bakar, Eur. Polym. J., 38, 251 (2002). https://doi.org/10.1016/S0014-3057(01)00194-X
- M. Abadyan, R. Bagheri, H. Haddadpour, and P. Motamedi, Mater. Des., 30, 3048 (2009). https://doi.org/10.1016/j.matdes.2008.12.012
- M. Abadyan, R. Bagheri, M. A. Kouchakzadeh, and S. A. Hosseini Kordkheili, Mater. Des., 32, 2900 (2011). https://doi.org/10.1016/j.matdes.2010.12.003
- J. K. Kim, C. Baillie, J. Poh, and Y. W. Mai, Compos. Sci. Technol., 43, 283 (1992). https://doi.org/10.1016/0266-3538(92)90099-O
- I. S. Seo, W. S. Chin, and D. G. Lee, Compos. Struct., 66, 533 (2004). https://doi.org/10.1016/j.compstruct.2004.04.076
- D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, IEEE Trans. Instrum. Meas., 37, 789 (1989).
- G. Gkikas, N. M. Barkoula, and A. S. Paipetis, Compos.: B, 43, 2697 (2012). https://doi.org/10.1016/j.compositesb.2012.01.070
- V. D. Ramos, H. M. da Costa, V. L. P. Soares, and R. S. V. Nascimento, Polym. Test., 24, 387 (2005). https://doi.org/10.1016/j.polymertesting.2004.09.010
- M. Abadyan, V. Khademi, R. Bagheri, H. Haddadpour, M. A. Kouchakzadeh, and M. Farsadi, Compos. Mater. Des., 30, 1976 (2009).
- R. Velmurugan and S. Solaimurugan, Compos. Sci. Technol., 67, 61 (2007). https://doi.org/10.1016/j.compscitech.2006.03.032
- D. W. Y. Wong, L. Lin, P. T. McGrail, T. Peijs, and P. J. Hogg, Compos.: A, 41, 759 (2010). https://doi.org/10.1016/j.compositesa.2010.02.008
Cited by
- Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics vol.73, pp.5, 2014, https://doi.org/10.1007/s00289-015-1553-7
- Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica vol.59, pp.3, 2014, https://doi.org/10.1134/s0965545x17030026
- Improvement of the mode I interlaminar fracture toughness of glass fiber/epoxy composites using polystyrene electrospun nanofibres vol.75, pp.11, 2014, https://doi.org/10.1007/s00289-018-2308-z
- Enhancing mode I and II interlaminar fracture toughness of carbon fiber-filled epoxy-based composites using both rice husk silica and silk fibroin electrospun nanofibers vol.31, pp.9, 2019, https://doi.org/10.1177/0954008319840404
- Enhanced mode I interlaminar fracture toughness and mechanical properties of carbon fiber-filled vinyl ester resin-based composite by using both coal fly ash and nano-/micro-glass fiber vol.77, pp.1, 2014, https://doi.org/10.1007/s00289-019-02739-6
- Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness vol.28, pp.1, 2014, https://doi.org/10.1007/s13233-020-8010-7
- Environmentally sustainable rice husk ash reinforced cardanol based polybenzoxazine bio-composites for insulation applications vol.77, pp.5, 2014, https://doi.org/10.1007/s00289-019-02854-4
- Effects of DOPO-Grafted Epoxidized Soybean Oil on Fracture Toughness and Flame Retardant of Epoxy Resin/Rice Husk Silica Hybrid vol.28, pp.9, 2020, https://doi.org/10.1007/s13233-020-8102-4
- Silane coupling agent with amine group grafted nano/micro-glass fiber as novel toughener for epoxy resin: fabrication and mechanical properties vol.27, pp.12, 2014, https://doi.org/10.1080/09276440.2020.1729031
- Crosslinking, Mechanical Properties, and Antimicrobial Activity of Photocurable Diacrylate Urethane/ZnO-Ag Nanocomposite Coating vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/7387160
- Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder vol.333, pp.None, 2014, https://doi.org/10.1016/j.jclepro.2021.130222