DOI QR코드

DOI QR Code

Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases

은첨착 대나무 활성탄의 제조와 NO 가스 반응 특성

  • Bak, Young-Cheol (Department of Chemical & Biological Engineering/Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical & Biological Engineering/Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Geun-Lim (Small & Medium Business Administration)
  • 박영철 (경상대학교 생명화학공학과/공학연구원) ;
  • 최주홍 (경상대학교 생명화학공학과/공학연구원) ;
  • 이근림 (중소기업청)
  • Received : 2014.04.29
  • Accepted : 2014.06.15
  • Published : 2014.12.01

Abstract

The Ag-impregnated activated carbon was produced from bamboo activated carbon by soaking method of silver nitrate solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. Soaking conditions are the variation of silver nitrate solution concentration (0.002~0.1 mol/L) and soaking time (maximum 24 h). The specific surface area and pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of used activated carbon. Carbon-NO reactions were carried out with respect to reaction temperature ($20{\sim}850^{\circ}C$) and NO gas partial pressure (0.1~1.8 kPa). As results, Ag amounts are saturated within 2h, Ag amounts increased 1.95 mg Ag/g (0.2%)~ 88.70 mg Ag/g (8.87%) with the concentration of silver nitrate solution in the range of 0.002~0.1 mol/L. The specific volume and surface area of bamboo activated carbon of impregnated with 0.2% silver were maximum, but decreased with increasing Ag amounts of activated carbon due to pore blocking. In NO reaction, the reaction rate of impregnated bamboo activated carbon was retarded as compare with that of bamboo activated carbon. Measured reaction orders of NO concentration and activation energy were 0.63[BA], 0.69l[BA(Ag)] and 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)], respectively.

대나무를 원료로 탄화 및 활성화온도 $900^{\circ}C$에서 대나무 활성탄을 만들고, 이 대나무 활성탄을 질산은 수용액에 침지시켜 은첨착 대나무활성탄을 제조하였다. 0.002~0.1 mol/L 농도의 질산은 수용액에서 농도변화와 시간 변화 조건에서 은첨착실험을 하였다. 제조된 첨착활성탄의 은첨착량, 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐대나무활성탄의 재활용을 위하여 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 반응온도 $20{\sim}850^{\circ}C$, NO 농도 0.1~1.8 kPa 변화 조건에서 하였다. 실험 결과, 첨착시간 2시간 내에 은첨착이 완료되었고, 질산은 수용액 농도가 0.002~0.1 mol/L로 증가됨에 따라 은첨착량은 1.95 mg Ag/g 활성탄(0.2%)~88.70 mg Ag/g 활성탄(8.87%)로 증가되었다. 대나무 활성탄 특성 분석에서 은첨착량이 증가할수록 세공 부피와 표면적은 은첨착 0.2%일 때 최대이고 은첨착량이 증가할수록 세공체적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 은첨착 대나무활성탄[BA(Ag)]이 대나무활성탄[BA]에 비하여 반응이 억제되는 것을 볼 수 있다. NO 반응에서의 활성화에너지는 80.5 kJ/mol[BA], 66.4 kJ/mol[BA(Ag)]로 나타났고, NO 분압에 대한 반응차수는 0.63[BA], 0.69l[BA(Ag)]이었다.

Keywords

References

  1. Park, S. J., Kim, B. J. and Kawasaki, J., "Studies on Textural Properties of Activated Carbon Fibers Containing Silver Metal and Their NO Removal Test," Korean Chem. Eng. Res., 41(5), 649-654(2003).
  2. Yim, K. S., Eom, S. Y., Ryu, S. K. and Edie, Dan D., "Microporosity and Behaviors of Metal Particles in Metal(Ag, Cu, Co)-Containing Activated Carbon Fibers," Korean Chem. Eng. Res., 41(4), 503-508(2003).
  3. Kim, J. G., Oh, W. C. and Kim, M. K., "A study on Characterization of Surface and Pore for Ag-Impregnated Activated Carbon," J. Korean Ind. Eng. Chem., 9(5), 729-733(1998).
  4. Bak, Y. C., Cho, K. J. and Choi, J. H., "Production and $CO_2$ Adsorption Characteristics of Activated Carbon from Bamboo by $CO_2$ Activation Method," Korean Chem. Eng. Res., 43(1), 146-152(2005).
  5. Yaverbaum, L. H., "Nitrogen Oxides Control and Removalrecent Developments," Noyes Data Corporation, N.J., pp. 45-53(1979).
  6. Sloss, L. L., "Nitrogen Oxides Control Technology Fact Book," Noyes Data Corporation, N.J., pp. 38-53(1992).
  7. Feng, B., Liu, H., Yuan, J., Lin, Z. and Liu, D., "Mechanisms of $N_2O$ Formation from Char Combustion," Energy Fuels, 10, 203-208(1996). https://doi.org/10.1021/ef9500898
  8. Burch, T. E., Tillman, F. R., Chen, W., Lester, T. W., Conway, R. B. and Sterling, A. M., "Partitioning of Nitrogenous Species in the Fuel-rich Stage of Reburning," Energy Fuels, 5, 231-241(1991). https://doi.org/10.1021/ef00026a001
  9. Park, H. M., Park, Y. K. and Jeon, J. K., "De NOx Performance of Catalysts Regenerated by Surfactant Solution," Korean Chem. Eng. Res., 49(6), 739-744(2011). https://doi.org/10.9713/kcer.2011.49.6.739
  10. Yoon, K. S. and Ryu, S. K., "Removal of NO Using Surface Modified Activated Carbon Fiber (ACF) by Impregnation and Heat-treatment of Propellant Waste," The Korean Journal of Chemical Engineering & Fuels, 27(6), 1882-1886(2010). https://doi.org/10.1007/s11814-010-0294-4
  11. Furusawa, T., Tsunoda, M., Tsujimura, M. and Adschri, T., "Nitric Oxide Reduction by Char and Carbon Monooxide," Fuel, 64, 1306-1309(1985). https://doi.org/10.1016/0016-2361(85)90193-0
  12. Chan, L. K., Sarofim, A. F. and Beer, J. M., "Kinetics of the NO-Carbon Reaction at Fluidized-bed Combustor Conditions," Combust. Flame, 52, 37-45(1983). https://doi.org/10.1016/0010-2180(83)90119-0
  13. Suzuki, T., Kyotani, T. and Tomita, A., "Study on the Carbon-nitric Oxide Reaction in the Presence of Oxygen," Ind. Eng. Chem. Res., 33, 2840-2845(1994). https://doi.org/10.1021/ie00035a038
  14. Teng, H., Suuberg, E. M. and Calo, J. M., "Studies on the Reduction of Nitric Oxide by Carbon: the NO-carbon Gasification Reaction," Energy Fuels, 6, 398-406(1992). https://doi.org/10.1021/ef00034a008
  15. DeGroot, W. F. and Richards, G. N., "Gasification of Cellulosic Chars in Oxgen and in NO," Carbon, 29(2), 179-183(1991). https://doi.org/10.1016/0008-6223(91)90068-T
  16. Teng, H., Lin, H. and Hsieh, Y., "Thermogravimetric Studies on the Global Kinetics of Carbon Gasification in Nitrous Oxide," Ind. Eng. Chem. Res., 36, 523-529(1997). https://doi.org/10.1021/ie960582m
  17. Aarna, I. and Suuberg, M., "A Review of the Kinetics of the Nitric Oxide-carbon Reaction," Fuel, 76, 475-486(1997). https://doi.org/10.1016/S0016-2361(96)00212-8
  18. Bak, Y. C., "Intrinsic Reactivity of NO and $N_2O$ Gas with Korean Anthracites," Energy Engg. J, 8(2), 279-284(1999).
  19. Park, S. J. and Jang, Y. S., "Effect of Micrppore Filling by Silver and Anti-bacterial Activity of Activated Carbon Fiber Surface Treated with $AgNO_3$," J. Korean Ind. Eng. Chem., 13(2), 166-172(2002).
  20. Chu, X. and Schmidt, L. D., "Intrinsic Rates of $NO_x$-carbon Reactions," Ind. Eng. Chem. Res., 32, 1359-1366(1993). https://doi.org/10.1021/ie00019a010
  21. Illan-Gomaz, M. J., Linares-Solano, A., Salinas-Martinez de Lecea, C. and Calo, J. M., "NO Reduction by Activated Carbons. 1.The Role of Carbon Porosity and Surface Area," Fuels, 7, 146-154(1993). https://doi.org/10.1021/ef00037a023
  22. Richthofen, A. V., Wendel, E. and Neuschutz, D., "Kinetics of NO Reduction with Pure and Potassium-doped Carbon," Fresenius J. Anal. Chem. 346, 261-264(1993). https://doi.org/10.1007/BF00321427
  23. Park, S. J., Jang, Y. S. and Kawasaki, J., "NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers," Korean Chem. Eng. Res., 40(6), 664-668(2002).

Cited by

  1. Kinetics of NO Reduction with Copper Containing Bamboo Activated Carbon vol.38, pp.3, 2016, https://doi.org/10.4491/KSEE.2016.38.3.144
  2. A study on the evaluation of odor adsorption capacity of biomass by-product using odor sensor vol.17, pp.1, 2018, https://doi.org/10.15250/joie.2018.17.1.27
  3. 알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성 vol.54, pp.5, 2014, https://doi.org/10.9713/kcer.2016.54.5.671