DOI QR코드

DOI QR Code

Toward a paradigm for civil structural control

  • Casciati, S. (Department DICAR, School of Architecture, University of Catania at Siracusa) ;
  • Chassiakos, A.G. (College of Engineering, California State University) ;
  • Masri, S.F. (Sonny Astani Department of Civil and Environmental Engineering, Kaprielian Hall, 206A, 3620 S. Vermont Avenue, University of Southern California)
  • Received : 2013.11.30
  • Accepted : 2014.05.14
  • Published : 2014.11.25

Abstract

Structural control is a very broad field combining the areas of automatic control and structural engineering, with applications ranging from aerospace and mechanical engineering to building and civil infrastructure systems. In this paper, the focus is placed on civil engineering applications only. The goal is to address the issues concurring to form the scientific paradigm. As a resut, possible future directions of research into this field are identified.

Keywords

References

  1. Araki, Y. Jinnouchi, Y. and Inoue, J. (1988), "Impact damper with granular materials", ASME PVP Div. 133, 879-893.
  2. Bletziger, K.U., Firl, M., Linhard, J. and Wuchner, R. (2010), "Optimal shapes of mechanical motivated surfaces", Comput. Method. Appl. M., 199(5-8), 324-333. https://doi.org/10.1016/j.cma.2008.09.009
  3. Caetano, E., Cunha, A., Moutinho, C. and Magalhaes, F. (2010), "Studies for controlling human-induced vibration of the Pedro e Ines footbridge, Portugal. Part 2: Implementation of tuned mass dampers", Eng. Struct., 32(4), 1082-1091. https://doi.org/10.1016/j.engstruct.2009.12.033
  4. Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. doi: 10.1016/S0141-0296(97)00072-2
  5. Carnap, R. (1967), The Logical Structure of the World, Felix Meiner Verlag, Leipzig, 1928. English translation, University of California Press, Berkeley.
  6. Casado C.M., Diaz I.M., de Sebastian, J., Poncela, A.V. and Lorenzana, A. (2013), "Implementation of passive and active vibration control on an in-service footbridge", Struct. Control Health Monit., 20(1) 70-87. https://doi.org/10.1002/stc.471
  7. Casciati, F. and Domaneschi, M. (2007), "Semi-active electro-inductive devices: characterization and modeling", J. Vib. Control., 13, 815-838. https://doi.org/10.1177/1077546307077465
  8. Casciati, F. and Giuliano, F. (2009), "Performance of multi-TMD in the towers of suspension bridges", J. Vib. Control, 15(6), 821-847. https://doi.org/10.1177/1077546308091455
  9. Casciati, F., Magonette, G. and Marazzi, F. (2006), Technology of Semi-active Devices and Applications in Vibration Mitigation, John Wiley & Sons, West Sussex.
  10. Casciati, F., Rodellar, J. and Yildirim, U. (2012), "Active and semi-active control of structures, theory andapplications: A review of recent advances", J. Intel. Mat. Syst. Str., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029
  11. Casciati, F. and Ubertini, F. (2008), "Nonlinear vibration of shallow cables with semi active tuned mass damper", Nonlinear Dynam., 53(1-2), 89-106. https://doi.org/10.1007/s11071-007-9298-y
  12. Casciati, S. and Chen, Z.C. (2011), "A multi-channel wireless connection system for structural health monitoring applications", Struct. Control Health Monit., 18(5), 588-600. https://doi.org/10.1002/stc.403
  13. Casciati, S. and Chen, Z.C. (2012), "An active mass damper system for structural control using real-time wireless sensors", Struct. Control Health Monit., 19(8), 691-700. doi:http://dx.doi.org/10.1002/stc.1485
  14. Casciati, S., Faravelli, L. and Chen, Z.C. (2012), "Energy harvesting and power management of wireless sensorsfor structural control applications in civil engineering", Smart Struct. Syst., 10(3), 299-312. https://doi.org/10.12989/sss.2012.10.3.299
  15. Casciati, S. and Faravelli, L. (2013), "Quantity vs. quality in the Model Order Reduction (MOR) of a linear system ", Smart Struct. Syst., 13(1), 99-109. https://doi.org/10.12989/sss.2014.13.1.099
  16. Chassiakos, A.G., Masri, S.F., Smyth, A. and Anderson, J.C. (1995), "Adaptive methods for identification ofhysteretic structures", Proceedings of the 1995 American Control Conference (ACC95), Seattle, June 1995.
  17. Chassiakos, A.G., Masri, S.F., Smyth, A.W. and Caughey, T.K. (1998), "On-line identification of hysteretic systems", J. Appl. Mech. - ASME, 65, 194-203. https://doi.org/10.1115/1.2789025
  18. Christodoulou, L. and Venables, J.D. (2003), "Multifunctional material systems: The first generation", JOM, 55(12), 39-45. https://doi.org/10.1007/s11837-003-0008-z
  19. Cimellaro, G.P., Soong, T.T. and Reinhorn, A.M. (2009), "Integrated design of inelastic controlled structural systems", Struct. Control Health Monit., 16 (7-8), 689-702. https://doi.org/10.1002/stc.314
  20. Dong, Y.K. and Chen, L.A. (2010), "High-spatial-resolution time-domain simultaneous strain and temperature sensor using brillouin scattering and birefringence in a polarization-maintaining fiber", IEEE Photonics Technol. Lett., 22(18), 1364-1366. https://doi.org/10.1109/LPT.2010.2056678
  21. Fang, X. and Tang, J. (2006), "Granular damping in forced vibration: qualitative and quantitative analyses", J. Vib. Acoust., 128, 489-500. https://doi.org/10.1115/1.2203339
  22. Faravelli, L., Casciati, F. and Fisher, D. (2011), "Some technical challenges in the design of rotating towers", Proceeding of the SMART11, Dubai, February 2011, Cd-rom.
  23. Faravelli, L., Fuggini, C. and Ubertini, F. (2011), "Toward a hybrid control solution for cable dynamics:theoretical prediction and experimental validation", Struct. Control Health Monit., 17(4), 386-403.
  24. FEMA E-74 (2011), Reducing the risks of nonstructural earthquake damage.
  25. Fisher, D. (2010),"Architecture, civil engineering and construction: any change since the Egyptian", Proceedings of the 5th European workshop on structural health monitoring, Sorrento, Italy, June 2010.
  26. Fornero, G. (2006), Il pensiero contemporaneo: dall'Ermeneutica alla Filosofia Analitica (in Italian), Istituto Geografico De Agostini, Novara.
  27. Giuliano, F. (2013), Note on the paper "Optimum parameters of tuned liquid columngas damper for mitigation of seismic-induced vibrations of offshore jacket platforms" by Seyed Amin Mousavi, Khosrow Bargi, and Seyed Mehdi Zahrai" , Struct. Control Health Monit., 20(5), 852-852. https://doi.org/10.1002/stc.1499
  28. Hiramoto, K., Matsuoka, T. and Sunakoda, K. (2011), "Inverse Lyapunov approach for semi-active control of civil structures", Struct. Control Health Monit., 18, 382-403. doi:10.1002/stc.375.
  29. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F. Skelton, R.E., Soong, T.T., Spencer J., B.F. and Yao, T.P. (1997), "Structural control: past, present, and future", J. Eng. Mech. - ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  30. http://www.greeka.com/cyclades/santorini/news/news/238.htm
  31. Ikeda, Y. (2009), "Active and semi active vibration control of buildings in Japan: practical applications and verification", Struct. Control Health Monit., 16(7-8), 703-723. https://doi.org/10.1002/stc.315
  32. Irschik, H., Schlacher, K. and Kugi, A. (1998), "Control of earthquake excited nonlinear structures using Liapunov's theory", Comput. Struct., 67(1-3), 83-90. https://doi.org/10.1016/S0045-7949(97)00159-4
  33. Karyeaclis, M.P. and Caughey, T.K. (1987), "Stability of a semi-active impact damper", J. Appl. Mech. - T ASME, 56(4), 926-929.
  34. Kobori, T. (1990), "Technology development and forecast of dynamical intelligent building (D. I. B.)", (Eds., K.P. Chong, S.C. Liu and J.C. Li), Intelligent Structures, Elsevier Applied Science, New York.
  35. Kobori, T. (1996), "Future direction on research and development of seismic-response-controlled structures", J. Microcomput. Civil. Eng., 11(5), 297-304. https://doi.org/10.1111/j.1467-8667.1996.tb00444.x
  36. Kolovsky, M.Z. (1999), Nonlinear Dynamics of Active and Passive Systems of Vibration Protection, Springer, Vienna.
  37. Kon, S. and Horowitz, R. (2008), "A high-resolution MEMS piezoelectric strain sensor for structural vibration eetection", IEEE Sens. J., 8(11-12), 2027-2035. https://doi.org/10.1109/JSEN.2008.2006708
  38. Kuhn, T.S. (1962), The Structure of Scientific Revolutions, The University of Chicago Press, Chicago.
  39. Lin, J.W., Betti, R., Smyth, A.W. and Longman, R.W. (2001), "On-line identification of non-linear hysteretic structural systems using a variable trace approach", Earthq. Eng. Struct. D., 30(9), 1279-1303. https://doi.org/10.1002/eqe.63
  40. Lu, Z. (2012), Personal communication.
  41. Lu, Z., Lu, X. and Masri, S.F. (2010), "Studies of the performance of particle dampers under dynamic load", J. Sound Vib., 329 (26), 5415-5433. https://doi.org/10.1016/j.jsv.2010.06.027
  42. Lu, Z., Lu, X., Lu, W. and Masri, S.F. (2011), "Shaking table test of the effects of multi-unit particle dampersattached to an MDOF system under earthquake excitation", Earthq. Eng. Struct. D., 41(5), 987-1000. doi:10.1002/eqe.1170.
  43. Lu, Z., Lu, X., Lu, W. and Masri, S.F. (2012), "Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads", J. Sound Vib., 331(9), 2007-2022. https://doi.org/10.1016/j.jsv.2011.12.022
  44. Lu, Z., Masri, S.F. and Lu, X. (2011), "Studies of the performance of particle dampers attached to a two-degreeof-freedom system under random excitation", J. Vib. Control., 17(10), 1454-1471. doi: 10.1177/1077546310370687
  45. Lu, Z., Masri, S.F. and Lu, X. (2011), "Parametric studies of the performance of particle dampers under harmonic excitation", Struct. Control Health Monit., 18(1), 79-98. doi:10.1002/stc.359
  46. Martelli, A. (2013), Personal communication.
  47. Masri, S.F. and Caughey, T.K. (1966), "On the stability of the impact damper", Trans. ASME, 88, 586-592. https://doi.org/10.1115/1.3645917
  48. Masri, S.F. (1967), "Electric analog studies of impact dampers", Exper. Mech., 7(2), 49-55. https://doi.org/10.1007/BF02326707
  49. Masri, S.F. (1969), "Analytical and experimental studies of multiple-unit impact dampers", J. Acoust. Soc. Am., 45(5), 1111-1117. https://doi.org/10.1121/1.1911581
  50. Masri, S.F. (1972), "Theory of the dynamic vibration neutralizer with motion-limiting stops", J. Appl. Mech. - T ASME, 39(2), 563-568. https://doi.org/10.1115/1.3422718
  51. Masri, S.F., Bekey, G.A. and Caughey, T.K. (1982), "On-line control of nonlinear flexible structures", J. Appl. Mech - T ASME., 104(4), 877-884.
  52. Masri, S.F., Miller, R.K., Dehghanyar, T.J. and Caughey, T.K. (1989), "Active parameter control of nonlinear vibrating structures", J. Appl. Mech. - ASME, 56, 658- 666. https://doi.org/10.1115/1.3176143
  53. Nishitani, A. and Matsui, C. (2013), "Report on the 2011 off the Pacific Coast of Tohoku Earthquake: Its Impact, and Control/Monitoring Performances", Adv. Sci. Technol., 83(1), 1-8. doi:10.4028/www.scientific.net/AST.83.1
  54. Nayeri, R.D., Masri, S.F. and Caffrey, J.P. (2007), "Studies of the performance of multi-unit impact dampers under stochastic excitation", J. Vib. Acoust., 129, 239-251. https://doi.org/10.1115/1.2346694
  55. Ni, Y.Q. and Zhou, H.F. (2010), "Guangzhou new TV tower: Integrated structural health monitoring and vibration control", Proceedings of the ASCE 2010 Structures Congress, Orlando FL, May 2010.
  56. Ormondroyd, J. and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", Trans. ASME , 50, 9-15.
  57. Panossian, H.V. (1992), "Structural damping enhancement via non-obstructive particle damping technique", J. Vib. Acoust., 114(1), 101-105. https://doi.org/10.1115/1.2930221
  58. Papalou, A. and Masri, S.F. (1998), "An experimental investigation of particle dampers under harmonic excitation", J. Vib. Control, 4, 361-379. https://doi.org/10.1177/107754639800400402
  59. Patten, W.N., Sun, J., Li, G., Kuehn, J. and Song, G. (1999), "Field test of an intelligent stiffener for bridges at the I-35 Walnut Creek Bridge", Earthq. Eng. Struct. D., 28(2), 109-126. https://doi.org/10.1002/(SICI)1096-9845(199902)28:2<109::AID-EQE806>3.0.CO;2-A
  60. Paulet-Crainiceanu, F., Wolfe, R., Caffrey, J. and Masri, S.F. (2000), "An Experimental Study of an Adaptive Momentum Exchange Device for Structural Control Applications", Proceedings of the 2nd European Conference on Structural Control, Paris.
  61. Popper, K.R. (1997), A world of propensities, Thoemmes Press, London.
  62. Preumont, A. (2011), Vibration control of active structures - An introduction, Structures, 3rd Ed., Springer, 2011- ISBN : 978-94-007-2032-9 (1st Ed. 1997).
  63. Saeki, M. (2002), "Impact damping with granular materials in a horizontally vibrating system", J. Sound Vib., 251, 153-161. https://doi.org/10.1006/jsvi.2001.3985
  64. Schlacher, K., Kugi, A. and Irschik, H. (1997), "Nonlinear control of earthquake excited high raised buildings by approximate disturbance decoupling", Acta Mech., 125(1-4), 49-62. https://doi.org/10.1007/BF01177298
  65. Sherwood, B., Adler, M., Alkalai, L., Burdick, G., Jordan, F., Naderi, F., Graham, L., Landis, R., Drake, B., Hoffman, S., Grunsfeld, J. and Seery, B.D. (2010), "Flexible-path human exploration", Proceedings of the AIAA Space2010 conference and exposition, Anaheim, CA, August 2010.
  66. Skelton, R.E. and de Oliveira, M.C. (2010), "Optimal complexity of deployable compressive structures", J. Franklin Inst. Eng. Appl. Math., 347(1), 228-256. doi:10.1016/j.jfranklin.2009.10.010
  67. Smyth, A.W., Masri, S.F. and Chassiakos, A.G. (1999), "On-line parametric identification of MDOF non-linear hysteretic systems", J. Eng. Mech.- ASCE, 125 (2), 133-142. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:2(133)
  68. Smyth, A.W., Masri, S.F., Kosmatopoulos, E.B., Chassiakos, A.G. and Caughey, T.K. (2002), "Development of adaptive modeling techniques for non-linear hysteretic systems", Int. J. Nonlinear Mech., 37(8), 1435-1451. https://doi.org/10.1016/S0020-7462(02)00031-8
  69. Soong, T.T. (1988), "Active structural control in civil engineering", Eng. Struct., 10(2), 74-84. https://doi.org/10.1016/0141-0296(88)90033-8
  70. Soong, T.T. and Dargush, G.F. (1997), Passive energy dissipation systems in structural engineering, John Wiley& Sons, Inc., New York.
  71. Timoshenko, S. (1928), "Discussion of the theory of the dynamic vibration absorber", Trans. ASME, 50, 20-21.
  72. Vecchio, K.S. (2005), "Synthetic multifunctional metallic-intermetallic laminate composites", JOM, 57(3), 25-31. https://doi.org/10.1007/s11837-005-0178-y
  73. Vinogradov, O.G. and Pivovarov, I. (1986), "Vibrations of system with non-linear hysteresis", J. Sound Vib., 111(1), 145-152. https://doi.org/10.1016/S0022-460X(86)81429-8
  74. Wen, Y.K. (1980), "Equivalent linearization for hysteretic systems under random excitations", J. Appl. Mech. - ASME, 47(1), 150-154. https://doi.org/10.1115/1.3153594
  75. Wong, C., Daniel, M.C. and Rongong, J.A. (2009), "Energy dissipation prediction of particle dampers", J. Sound Vib., 319, 91-118. https://doi.org/10.1016/j.jsv.2008.06.027
  76. Wu, C., Liao, W. and Wang, M.Y. (2004), "Modeling of granular particle damping using multiphase flow theoryof gas-particle", J. Vib. Acoust., 126, 196-201. https://doi.org/10.1115/1.1688763
  77. Yao, J.T.P. (1972), "Concept of structural control", J. Struct. Div. - ASCE, 98(7), 1567-1574.

Cited by

  1. Seismic isolation performance sensitivity to potential deviations from design values vol.18, pp.2, 2016, https://doi.org/10.12989/sss.2016.18.2.293
  2. Study on self-adjustable tuned mass damper with variable mass 2018, https://doi.org/10.1002/stc.2114
  3. Experimental parametric study on wind-induced vibration control of particle tuned mass damper on a benchmark high-rise building vol.26, pp.8, 2017, https://doi.org/10.1002/tal.1359
  4. Dissipation’s Capacity Study of Lead–Rubber Bearing System in Seismic Steel Structures Design vol.42, pp.9, 2017, https://doi.org/10.1007/s13369-017-2489-z
  5. Particle impact dampers: Past, present, and future vol.25, pp.1, 2018, https://doi.org/10.1002/stc.2058
  6. Designing the control law on reduced-order models of large structural systems vol.23, pp.4, 2016, https://doi.org/10.1002/stc.1805
  7. Active tendon control of suspension bridges vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.031
  8. Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.001
  9. Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation vol.24, pp.12, 2017, https://doi.org/10.1002/stc.2033
  10. Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.809
  11. Theoretical study and experimental validation on the energy dissipation mechanism of particle dampers 2018, https://doi.org/10.1002/stc.2125
  12. Experimental and numerical study on vibration control effects of a compound mass damper vol.27, pp.15, 2018, https://doi.org/10.1002/tal.1511
  13. Development and implementation of a control system for the dynamic mitigation of 3-D masonry structures with feedback on the drifts in the horizontal plane vol.25, pp.8, 2018, https://doi.org/10.1002/stc.2176
  14. Performance-based seismic analysis on a super high-rise building with improved viscously damped outrigger system vol.25, pp.8, 2018, https://doi.org/10.1002/stc.2190
  15. Web based evaluation of earthquake damages for reinforced concrete buildings vol.13, pp.4, 2014, https://doi.org/10.12989/eas.2017.13.4.387
  16. Motion-based design of TMD for vibrating footbridges under uncertainty conditions vol.21, pp.6, 2014, https://doi.org/10.12989/sss.2018.21.6.727
  17. Experimental investigation of an impact-based, dual-mode vibration isolator/absorber system vol.104, pp.None, 2014, https://doi.org/10.1016/j.ijnonlinmec.2018.02.013
  18. A review on sensors and systems in structural health monitoring: current issues and challenges vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.509
  19. An actively controlled prototype for educational buildings vol.25, pp.1, 2014, https://doi.org/10.12989/sss.2020.25.1.105