DOI QR코드

DOI QR Code

Theoretical analyses for a 2-2 cement-based piezoelectric curved composite with electrode layers

  • Zhang, Taotao (School of Transportation Science and Engineering, Beihang University)
  • Received : 2014.02.28
  • Accepted : 2014.09.23
  • Published : 2014.11.25

Abstract

Based on the general theory of elasticity, the static behavior of 2-2 cement-based piezoelectric curved composites is investigated. The actuator consists of 2 cement layers and 1 piezoelectric layer. Considering the electrode layer between the cement layer and the piezoelectric layer as the elastic layer, the exact solutions of the mechanical and electrical fields of the curved composites are obtained by utilizing the Airy stress function method. Furthermore, the theoretical results are compared with the FEM results and good agreements (with almost no error) are obtained, thus proving the validity of this study. Furthermore, the influence of certain parameters is discussed, which can help to get the desired displacements and stresses. Finally, it is seen that the analytical model established in this paper works well, which could benefit the design of this kind of cement-based smart devices.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Chaipanich, A. (2007a), "Dielectric and piezoelectric properties of PZT/cement composites", Curr. Appl. Phys., 7, 537-539. https://doi.org/10.1016/j.cap.2006.10.015
  2. Chaipanich, A. (2007b), "Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites", Curr. Appl. Phys., 7, 574-577. https://doi.org/10.1016/j.cap.2006.11.036
  3. Chaipanich, A., Rujijanagul, G. and Tunkasiri, T. (2010), "Effect of compressive stress on the ferroelectric hysteresis behavior in 0-3 PZT-cement composites", Mater. Lett., 64(5), 562-564. https://doi.org/10.1016/j.matlet.2009.11.050
  4. Huang, S.F., Chang, J. and Xu, R.H. (2004), "Piezoelectric properties of 0-3 PZT/sulfoaluminate cement composites", Smart Mater. Struct., 13(2), 270-274. https://doi.org/10.1088/0964-1726/13/2/004
  5. Huang, S.F. and Xu, D.Y. (2008), "Dielectric and piezoelectric properties of 2-2 cement based piezoelectric composite", J. Compos. Mater., 42(23), 2437-2443. https://doi.org/10.1177/0021998308095767
  6. Li, Z. and Yang, X. (2006), "Application of cement-based piezoelectric sensors for monitoring traffic flows", J. Transp. Eng. - ASCE, 132(7), 565-573. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:7(565)
  7. Li, Z.J., Zhang, D. and Wu, K.R. (2001), "Cement matrix 2-2 piezoelectric composite: Part I. Sensory effect", Mater. Struct., 13(242), 506-512.
  8. Li, Z.J., Zhang, D. and Wu, K.R. (2002), "Cement-based 0-3 piezoelectric composites", J. Am. Ceramic Soc., 85(2), 305-313.
  9. Potong, R., Rianyoi, R., Jaitanong, N., Yimnirun, R. and Chaipanich, A. (2012), "Ferroelectric hysteresis behavior and dielectric properties of 1-3 lead zirconate titanate-cement composites", Ferroelectrics letters section, 39(1), 15-19. https://doi.org/10.1080/07315171.2012.707029
  10. Rassaian, M. and Beranek, M.W. (1999), "Quantitative Characterization of 96.5Sn3.5Ag and 80Au20Sn Optical Fiber Solder Bond Joints on Silicon Micro-Optical Bench Substrates", IEEE T. Adv. Packaging, 22(1), 86-93. https://doi.org/10.1109/6040.746547
  11. Ruan, X.P., Danforth, S.S., Safari, A. and Chou, T.W. (2000), "Saint-Venant end effects in piezoceramic materials", Int. J. Solids. Struct., 37, 2625-2637. https://doi.org/10.1016/S0020-7683(99)00034-7
  12. Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater. Struct., 14(4), 835-842. https://doi.org/10.1088/0964-1726/14/4/043
  13. Shi, Z.F. and Zhang, T.T. (2007), "Static analyses for 2-2 multi-layered piezoelectric curved composites", Int. J. Eng. Sci., 45, 509-524. https://doi.org/10.1016/j.ijengsci.2007.04.013
  14. Xu, D.Y., Chen, X., Huang, S.F.. and Jiang, M.H. (2009), "Electromechanical properties of 2-2 cement based piezoelectric composite", Curr. Appl. Phys., 9, 816-819. https://doi.org/10.1016/j.cap.2008.07.015
  15. Wang, F.Z., Wang, H., Song, Y. And Sun, H.J. (2012), "High piezoelectricity 0-3 cement-based piezoelectric composites", Mater. Lett., 76, 208-210. https://doi.org/10.1016/j.matlet.2012.02.094
  16. Xu, D.Y., Cheng, X., Huang, S.F. and Jiang, M.H. (2011), "Effect of cement matrix and composite thickness on properties of 2-2 type cement-based piezoelectric composites", J. Compos. Mater., 45(20), 2083-2089. https://doi.org/10.1177/0021998311401059
  17. Zhang, D., Li, Z.J. and Wu, K.R. (2002a), "2-2 piezoelectric cement matrix composite: Part II. Actuator effect", Cement Concrete Res., 32(5), 825-830. https://doi.org/10.1016/S0008-8846(01)00761-X
  18. Zhang, D., Wu, K.R. and Li, Z.J. (2002b), "Feasibility study of cement based piezoelectric composite", J. Build. Mater., 5(2), 141-146.
  19. Zhang, T.T. and Shi, Z.F. (2011a), "Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer", Smart Mater. Struct., 20(8), 085017. https://doi.org/10.1088/0964-1726/20/8/085017
  20. Zhang, T.T. and Shi, Z.F. (2011b), "Exact solutions of the piezoelectric transducer under multi loads", Smart Struct. Syst., 8(4), 413-431. https://doi.org/10.12989/sss.2011.8.4.413

Cited by

  1. Theoretical analysis of a resistance adjusting type piezoelectric cylindrical transducer vol.28, pp.20, 2017, https://doi.org/10.1177/1045389X17704068
  2. Theoretical analysis of the dynamic properties of a 2-2 cement-based piezoelectric composite under impact load 2018, https://doi.org/10.1177/1045389X17730931
  3. Dynamic Analytical Solution of a Piezoelectric Stack Utilized in an Actuator and a Generator vol.8, pp.10, 2018, https://doi.org/10.3390/app8101779
  4. Effects of electrodes and electrical connections of piezoelectric layers on dynamic characteristics of radially polarized multilayer piezoelectric cylindrical transducers pp.1530-8138, 2019, https://doi.org/10.1177/1045389X18803454
  5. A new piezoelectric hollow cylindrical transducer with multiple concentric annular metal fillers vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab0318
  6. Effects of electrodes and protective layers on the electromechanical characteristics of piezoelectric stack actuators vol.28, pp.None, 2014, https://doi.org/10.1177/0963693519877419
  7. Modeling and electromechanical performance analysis of frequency-variable piezoelectric stack transducers vol.31, pp.6, 2014, https://doi.org/10.1177/1045389x20905982