Acknowledgement
Supported by : Fundamental Research Grant Scheme (FRGS)
References
- Bhowmik, S., Weber, F. and Hogsberg, J. (2013), "Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper", Struct. Eng. Mech., 46(5), 673-693. https://doi.org/10.12989/sem.2013.46.5.673
- Bose, H. and Ehrlich, J. (2012), "Magnetorheological dampers with various designs of hybrid magnetic circuits", J. Intel. Mat. Syst. Str., 23(9), 979-987. https://doi.org/10.1177/1045389X11433497
- Brigley, M., Choi, Y.T., Wereley, N.M. and Choi, S.B. (2007), "Magnetorheological isolators using multiple fluid modes", J. Intel. Mat. Syst. Str., 18(12), 1143-1148. https://doi.org/10.1177/1045389X07083129
- Carletto, P. and Bossis, G. (2003), "Field-induced structures and rheology of a magnetorheological suspension confined between two walls", J. Phys. - Condens. Mat., 15(15), S1437-S1449. https://doi.org/10.1088/0953-8984/15/9/307
- El Wahed, A.K. and McEwan, C.A. (2011), "Design and performance evaluation of magnetorheological fluids under single and mixed modes", J. Intel. Mat. Syst. Str., 22(7), 631-643. https://doi.org/10.1177/1045389X11404453
- Gavin, H.P. (1998), "Design method for high-force electrorheological dampers", Smart Mater. Struct., 7(5), 664-673. https://doi.org/10.1088/0964-1726/7/5/010
- Genc, S. and Phule, P.P. (2002), "Rheological properties of magnetorheological fluids", Smart Mater. Struct., 11(1), 140-146. https://doi.org/10.1088/0964-1726/11/1/316
- Goncalves, F.D. and Carlson, J.D. (2009), "An alternate operation mode for MR fluids-magnetic gradient pinch", J. Phys.: Conf. Ser., 149(1), 012050. https://doi.org/10.1088/1742-6596/149/1/012050
- Guo, C., Gong, X., Xuan, S., Qin, L. and Yan, Q. (2013), "Compression behaviors of magnetorheological fluids under nonuniform magnetic field", Rheol. Acta, 52(2), 165-176. https://doi.org/10.1007/s00397-013-0678-6
- Hagenbuchle, M. and Liu, J. (1997), "Chain formation and chain dynamics in a dilute magnetorheological fluid", Appl. Optics, 36(30), 7664-7671. https://doi.org/10.1364/AO.36.007664
- Hong, S.R., Wereley, N.M., Choi, Y.T. and Choi, S.B. (2008), "Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers", J. Sound Vib., 312(3), 399-417. https://doi.org/10.1016/j.jsv.2007.07.087
- Imaduddin, F., Mazlan, S.A., Zamzuri, H. and Yazid, I.I.M. (2013), "Design and performance analysis of a compact magnetorheological valve with multiple annular and radial gaps", J. Intel. Mat. Syst. Str., DOI: 10.1177/1045389X13508332.
- Ismail, I., Mazlan, S.A., Zamzuri, H. and Olabi, A.G. (2012), "Fluid-particle separation of magnetorheological fluid in squeeze mode", Jpn. J. Appl. Phys., 51(6), 067301. https://doi.org/10.7567/JJAP.51.067301
- Jolly, M.R., Bender, J.W. and Carlson, J.D. (1999), "Properties and applications of commercial magnetorheological fluids", J. Intel. Mat. Syst. Str., 10(1), 5-13. https://doi.org/10.1177/1045389X9901000102
- Mazlan, S.A., Ismail, I., Zamzuri, H. and Abd Fatah, A.Y. (2011), "Compressive and tensile stresses of magnetorheological fluids in squeeze mode", Int. J. Appl. Electrom., 36(4), 327-337.
- Mazlan, S.A., Issa, A., Chowdhury, H.A. and Olabi, A.G. (2009), "Magnetic circuit design for the squeeze mode experiments on magnetorheological fluids", Mater. Design, 30(6), 1985-1993. https://doi.org/10.1016/j.matdes.2008.09.009
- Nguyen, Q.H., Choi, S.B. and Wereley, N.M. (2008), "Optimal design of magnetorheological valves via a finite element method considering control energy and a time constant", Smart Mater. Struct., 17(2), 025024. https://doi.org/10.1088/0964-1726/17/2/025024
- Tang, X., Zhang, X., Tao, R. and Rong, Y.M. (2000), "Structure-enhanced yield stress of magnetorheological fluids", J. Appl. Phys., 87(5), 2634-2638. https://doi.org/10.1063/1.372229
- Tian, Y., Meng, Y., Mao, H. and Wen, S. (2002), "Electrorheological fluid under elongation, compression and shearing", Phys. Rev. E., 65(3), 031507. https://doi.org/10.1103/PhysRevE.65.031507
- Wang, H., Bi, C., Kan, J., Gao, C. and Xiao, W. (2011), "The mechanical property of magnetorheological fluid under compression, elongation and shearing", J. Intel. Mat. Syst. Str., 22(8), 811-816. https://doi.org/10.1177/1045389X11409605
- Wang, J. and Meng, G. (2001), "Magnetorheological fluid devices: principles, characteristics and applications in mechanical engineering", P. I. Mech. Eng. L-J. Mat., 215(3), 165-174.
- Wereley, N.M. and Pang, L. (1998), "Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models", Smart Mater. Struct., 7(5), 732-743. https://doi.org/10.1088/0964-1726/7/5/015
- Yazid, I.I.M., Mazlan, S.A., Kikuchi, T., Zamzuri, H. and Imaduddin, F. (2014), "Design of magnetorheological damper with a combination of shear and squeeze modes", Mater. Design, 54, 87-95. https://doi.org/10.1016/j.matdes.2013.07.090
- Zeinali, M., Mazlan, S.A., Abd Fatah, A.Y. and Zamzuri, H. (2013), "A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system", Smart Mater. Struct., 22(12), 125013. https://doi.org/10.1088/0964-1726/22/12/125013