Acknowledgement
Supported by : CONICYT
References
- Abdulridha, A., Palermo, D., Foo, S. and Vecchio, F.J. (2013), "Behavior and modeling of superelasticshape memory alloy reinforced concrete beams", Eng. Struct., 49, 893-904. https://doi.org/10.1016/j.engstruct.2012.12.041
- Alam, M.S., Moni, M. and Tesfamariam, S. (2012), "Seismic overstrength and ductility of concrete buildings reinforced with superelastic shape memory alloy rebar", Eng. Struct., 34, 8-20. https://doi.org/10.1016/j.engstruct.2011.08.030
- Alonso, J. (1989), Mechanical characteristics of X-Plate energy dissipators, CE-299 REPORT, College of Engineering, University of California, Berkeley.
- Asgarian, B. and Moradi, S. (2011), "Seismic response of steel braced frames with shape memory alloy braces", J. Constr. Steel Res., 67(1), 65-74. https://doi.org/10.1016/j.jcsr.2010.06.006
- Beltran, J.F., Cruz, C., Herrera, R. and Moroni, M.O. (2011), "Shape memory alloy CuAlBe strands subjected to cyclic axial loads", Eng. Struct., 33(10), 2910-2918. https://doi.org/10.1016/j.engstruct.2011.06.015
- Bhuiyan, A.R. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49, 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, S., and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85 https://doi.org/10.12989/sss.2010.6.1.073
- Casciati, F. and Van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-121. https://doi.org/10.12989/sss.2008.4.2.103
- De la Llera, J.C., Esguerra, C., Almazan J.L. (2004), "Earthquake behavior of structures with copper energy dissipators", Earthq. Eng. Struct. D., 33(3), 329-358. https://doi.org/10.1002/eqe.354
- Dieng, L., Helbert, G., Chirani, S.A., Lecompte, T. and Pilvin, P. (2013), "Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables", Eng. Struct., 56, 1547-1556. https://doi.org/10.1016/j.engstruct.2013.07.018
- Dong, J., Cai, C.S. and Okeil, A.M. (2011), "Overview of potential and existing applications of shape memory alloys in bridges", J. Bridge Eng., 16(2), 305-315. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000145
- Gibson, P. (2008), "Fabricacion y caracterizacion de una aleacion con memoria de forma CuZnAl considerada para disipadores sismicos", Mechanical Engineering Thesis (In Spanish), Universidad de Chile, Santiago, Chile.
- Johnson, R., Padgett, J.E., Maragakis, M.E., DesRoches, R. and Saiidi, M.S. (2008), "Large scale testing of Nitinol shape memory alloy devices for retrofitting of bridges", Smart Mater. Struct., 17(3), art.no. 035018.
- MATLAB (2009), Version 7.8.0.347 (R2009a), February, www.mathworks.com
- McCormick, J.P. (2006),"Cyclic behavior of shape memory alloys: Material characterization and optimization", Ph.D. Dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta.
- Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037
- Montecinos, S., Cuniberti, A. and Sepulveda, A. (2008),"Grain size and pseudoelastic behavior of a Cu-Al-Be alloy", Mater. Charact., 59(2),117-123. https://doi.org/10.1016/j.matchar.2006.11.009
- Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear one-dimensional shape memory material model for use in structural engineering applications", Eng. Struct,, 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007
- Somerday, M., Wert, J.A. and Comstock, R.J, (1997),"Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy", Metall. Mater. Trans. - A, 28(11), 2335-2341. https://doi.org/10.1007/s11661-997-0190-7
- Speicher, M.S., DesRoches, R. and Leon, R.T. (2011), "Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection", Eng. Struct., 33, 2448-2457. https://doi.org/10.1016/j.engstruct.2011.04.018
- Sutou, Y., Omori, T., Yamauchi, K., Ono, N.,Kainuma, R. and Ishida, K. (2005),"Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire", Acta Materialia, 53(15), 4121-4133. https://doi.org/10.1016/j.actamat.2005.05.013
- Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M. W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng. - ASCE, 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3)
- Tena-Colunga, A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-821. https://doi.org/10.1016/S0141-0296(97)00165-X
- Torra, V., Auguet, C., Isalgue, A., Carreras, G., Terriault, P. and Lovey, F.C. (2013),"Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: A mesoscopic and macroscopic experimental analysis with numerical simulations", Eng. Struct., 49, 43-57. https://doi.org/10.1016/j.engstruct.2012.11.011
- Vargas, J. (2007), Ensayo de placas tipo ADAS de laminas de CuZnAl, Civil EngineeringThesis (In Spanish), Universidad de Chile, Santiago, Chile.
- Youssef, M.A., Alam, M.S. and Nehdi M. (2007), "Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys", Earthq. Eng., 12(7), 1205-1222.
Cited by
- Design principles for stiffness-tandem energy dissipation coupling beam vol.20, pp.1, 2014, https://doi.org/10.12989/sss.2017.20.1.053
- Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337
- Post-buckling analysis of non-uniformly heated functionally graded cylindrical shells enhanced by shape memory alloys using classical lamination theory vol.30, pp.16, 2019, https://doi.org/10.1177/1045389x19861794