DOI QR코드

DOI QR Code

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo (Department of Civil Engineering, Universidad de Chile) ;
  • Herrera, Ricardo A. (Department of Civil Engineering, Universidad de Chile) ;
  • Moroni, Maria O. (Department of Civil Engineering, Universidad de Chile)
  • Received : 2013.06.12
  • Accepted : 2013.12.22
  • Published : 2014.11.25

Abstract

Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

Keywords

Acknowledgement

Supported by : CONICYT

References

  1. Abdulridha, A., Palermo, D., Foo, S. and Vecchio, F.J. (2013), "Behavior and modeling of superelasticshape memory alloy reinforced concrete beams", Eng. Struct., 49, 893-904. https://doi.org/10.1016/j.engstruct.2012.12.041
  2. Alam, M.S., Moni, M. and Tesfamariam, S. (2012), "Seismic overstrength and ductility of concrete buildings reinforced with superelastic shape memory alloy rebar", Eng. Struct., 34, 8-20. https://doi.org/10.1016/j.engstruct.2011.08.030
  3. Alonso, J. (1989), Mechanical characteristics of X-Plate energy dissipators, CE-299 REPORT, College of Engineering, University of California, Berkeley.
  4. Asgarian, B. and Moradi, S. (2011), "Seismic response of steel braced frames with shape memory alloy braces", J. Constr. Steel Res., 67(1), 65-74. https://doi.org/10.1016/j.jcsr.2010.06.006
  5. Beltran, J.F., Cruz, C., Herrera, R. and Moroni, M.O. (2011), "Shape memory alloy CuAlBe strands subjected to cyclic axial loads", Eng. Struct., 33(10), 2910-2918. https://doi.org/10.1016/j.engstruct.2011.06.015
  6. Bhuiyan, A.R. and Alam, M.S. (2013), "Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing", Eng. Struct., 49, 396-407. https://doi.org/10.1016/j.engstruct.2012.11.022
  7. Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
  8. Casciati, S., and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85 https://doi.org/10.12989/sss.2010.6.1.073
  9. Casciati, F. and Van der Eijk, C. (2008), "Variability in mechanical properties and microstructure characterization of CuAlBe shape memory alloys for vibration mitigation", Smart Struct. Syst., 4(2), 103-121. https://doi.org/10.12989/sss.2008.4.2.103
  10. De la Llera, J.C., Esguerra, C., Almazan J.L. (2004), "Earthquake behavior of structures with copper energy dissipators", Earthq. Eng. Struct. D., 33(3), 329-358. https://doi.org/10.1002/eqe.354
  11. Dieng, L., Helbert, G., Chirani, S.A., Lecompte, T. and Pilvin, P. (2013), "Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables", Eng. Struct., 56, 1547-1556. https://doi.org/10.1016/j.engstruct.2013.07.018
  12. Dong, J., Cai, C.S. and Okeil, A.M. (2011), "Overview of potential and existing applications of shape memory alloys in bridges", J. Bridge Eng., 16(2), 305-315. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000145
  13. Gibson, P. (2008), "Fabricacion y caracterizacion de una aleacion con memoria de forma CuZnAl considerada para disipadores sismicos", Mechanical Engineering Thesis (In Spanish), Universidad de Chile, Santiago, Chile.
  14. Johnson, R., Padgett, J.E., Maragakis, M.E., DesRoches, R. and Saiidi, M.S. (2008), "Large scale testing of Nitinol shape memory alloy devices for retrofitting of bridges", Smart Mater. Struct., 17(3), art.no. 035018.
  15. MATLAB (2009), Version 7.8.0.347 (R2009a), February, www.mathworks.com
  16. McCormick, J.P. (2006),"Cyclic behavior of shape memory alloys: Material characterization and optimization", Ph.D. Dissertation, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta.
  17. Miller, D.J., Fahnestock, L.A. and Eatherton, M.R. (2012), "Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace", Eng. Struct., 40, 288-298. https://doi.org/10.1016/j.engstruct.2012.02.037
  18. Montecinos, S., Cuniberti, A. and Sepulveda, A. (2008),"Grain size and pseudoelastic behavior of a Cu-Al-Be alloy", Mater. Charact., 59(2),117-123. https://doi.org/10.1016/j.matchar.2006.11.009
  19. Motahari, S.A. and Ghassemieh, M. (2007), "Multilinear one-dimensional shape memory material model for use in structural engineering applications", Eng. Struct,, 29(6), 904-913. https://doi.org/10.1016/j.engstruct.2006.06.007
  20. Somerday, M., Wert, J.A. and Comstock, R.J, (1997),"Effect of grain size on the observed pseudoelastic behavior of a Cu-Zn-Al shape memory alloy", Metall. Mater. Trans. - A, 28(11), 2335-2341. https://doi.org/10.1007/s11661-997-0190-7
  21. Speicher, M.S., DesRoches, R. and Leon, R.T. (2011), "Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection", Eng. Struct., 33, 2448-2457. https://doi.org/10.1016/j.engstruct.2011.04.018
  22. Sutou, Y., Omori, T., Yamauchi, K., Ono, N.,Kainuma, R. and Ishida, K. (2005),"Effect of grain size and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire", Acta Materialia, 53(15), 4121-4133. https://doi.org/10.1016/j.actamat.2005.05.013
  23. Symans, M.D., Charney, F.A., Whittaker, A.S., Constantinou, M.C., Kircher, C.A., Johnson, M. W. and McNamara, R.J. (2008), "Energy dissipation systems for seismic applications: Current practice and recent developments", J. Struct. Eng. - ASCE, 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3)
  24. Tena-Colunga, A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-821. https://doi.org/10.1016/S0141-0296(97)00165-X
  25. Torra, V., Auguet, C., Isalgue, A., Carreras, G., Terriault, P. and Lovey, F.C. (2013),"Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: A mesoscopic and macroscopic experimental analysis with numerical simulations", Eng. Struct., 49, 43-57. https://doi.org/10.1016/j.engstruct.2012.11.011
  26. Vargas, J. (2007), Ensayo de placas tipo ADAS de laminas de CuZnAl, Civil EngineeringThesis (In Spanish), Universidad de Chile, Santiago, Chile.
  27. Youssef, M.A., Alam, M.S. and Nehdi M. (2007), "Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys", Earthq. Eng., 12(7), 1205-1222.

Cited by

  1. Design principles for stiffness-tandem energy dissipation coupling beam vol.20, pp.1, 2014, https://doi.org/10.12989/sss.2017.20.1.053
  2. Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337
  3. Post-buckling analysis of non-uniformly heated functionally graded cylindrical shells enhanced by shape memory alloys using classical lamination theory vol.30, pp.16, 2019, https://doi.org/10.1177/1045389x19861794