Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Cooper, J.E. and Worden, K. (2000), "On-line physical parameter estimation with adaptive forgetting factors", Mech. Syst. Signal Pr., 14(5), 705-730. https://doi.org/10.1006/mssp.2000.1322
- Ghanem, R. and Romeo, F. (2000), "A wavelet-based approach for the identification of linear time-varying dynamical systems", J. Sound Vib., 234(4), 555-576. https://doi.org/10.1006/jsvi.1999.2752
- Hera, A., Shinde, A. and Hou, Z.K. (2005), "Issues in tracking instantaneous modal parameters for structural health monitoring using wavelet approach", Proceedings of the 23rd International Modal Analysis Conference (IMAC XXIII), Orlando, Florida, USA.
- Hou, Z.K., Hera, A. and Shinde, A. (2006), "Wavelet-based structural health monitoring of earthquake excited structures", Computer-Aided Civil. Infrastruct. Eng., 21(4), 68-279.
- Li, H.N. and Shi, Z.Y. (2007), "Physical parameter identification of time-varying system based on free response data", J. Vib. Eng., 20(4), 348-351. (in Chinese)
- Liu, K. (1997), "Identification of linear time-varying systems", J. Sound Vib., 206(4), 487-500. https://doi.org/10.1006/jsvi.1997.1105
- Liu, K. and Deng, L. (2004), "Experimental verification of an algorithm for identification of linear time-varying systems", J. Sound Vib., 279, 11770-1180.
- Pang, S.W., Yu, K.P. and Zou J.X. (2005), "Improved subspace method with application in linear time-varying structural modal parameter identification", Chinese J. Appl. Mech., 2(2), 184-188. (in Chinese)
- Shi, Z.Y. and Law, S.S. (2007), "Identification of linear time-varying dynamical systems using Hilbert transform and empirical mode decomposition method", J. Appl. Mech. -T ASME, 74(2), 223-230. https://doi.org/10.1115/1.2188538
- Tsatsanis, M.K. and Giannakis, G.B. (1993), "Time-varying system identification and model validation using wavelets", IEEE T. Signal Proces., 41(12), 3512-3523. https://doi.org/10.1109/78.258089
- Vaidyanathan, P.P. (1990), "Multirate digital filters, filter banks, polyphase networks, and applications", Proc. IEEE, 78(1), 56-93. https://doi.org/10.1109/5.52200
- Vetterli, M. and Herley, C. (1992), "Wavelets and filter banks: theory and design", IEEE T. Signal Proces., 40(9), 2207-2232. https://doi.org/10.1109/78.157221
- Wang, C., Ren, W.X., Wang, Z.C. and Zhu, H.P. (2013), "Instantaneous frequency identification of time-varying structures by continuous wavelet transform", Eng. Struct., 52, 17-25. https://doi.org/10.1016/j.engstruct.2013.02.006
- Wang, Z.C., Ren, W.X. and Liu, J.L. (2013), "A synchrosqueezed wavelet transform enhanced by extended analytical mode decomposition method for dynamic signal reconstruction", J. Sound Vib., 332(22), 6016-6028. https://doi.org/10.1016/j.jsv.2013.04.026
- Wang, Z.C. and Chen, G.D. (2012), "A recursive Hilbert-Huang transform method for time-varying property identification of linear shear-type buildings under base excitations", J. Eng. Mech. - ASCE, 138(6), 631-639. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000357
- Xu, X.Z., Zang, Z.Y. and Hua H.X. (2003a), "Identification of time-variant modal parameters by a time-varying parametric approach", Acta Aeronaut. Astronautica Sinica, 24(3), 230-233.
- Xu, X.Z., Zang, Z.Y. and Hua H.X. (2003b), "Time-varying modal parameter identification with time-frequency analysis methods", J. Shanghai Jiaotong Univ., 37(2), 122-126. (in Chinese)
- Yang, J.N. and Lin, S. (2004), "On-line identification of non-linear hysteretic structures using an adaptive tracking technique", Nonlinear Mech., 39(9), 1481-1491. https://doi.org/10.1016/j.ijnonlinmec.2004.02.010
- Yang, J.N. and Lin, S. (2005), "Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique", J. Eng. Mech. - ASCE, 131(3), 290-298. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:3(290)
Cited by
- Shear wave in a fiber-reinforced anisotropic layer overlying a pre-stressed porous half space with self-weight vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.911
- Wavelet analysis based damage localization in steel frames with bolted connections vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1189
- Time–frequency analysis and applications in time-varying/nonlinear structural systems: A state-of-the-art review 2018, https://doi.org/10.1177/1369433217751969
- A wavelet transform and substructure algorithm for tracking the abrupt stiffness degradation of shear structure pp.2048-4011, 2018, https://doi.org/10.1177/1369433218807690
- Wavelet-based automatic identification method of axle distribution information vol.63, pp.6, 2014, https://doi.org/10.12989/sem.2017.63.6.761
- Identification of plastic deformations and parameters of nonlinear single-bay frames vol.22, pp.3, 2018, https://doi.org/10.12989/sss.2018.22.3.315
- Bayesian Prediction of Pre-Stressed Concrete Bridge Deflection Using Finite Element Analysis vol.19, pp.22, 2014, https://doi.org/10.3390/s19224956
- The Teager-Kaiser Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool vol.9, pp.23, 2019, https://doi.org/10.3390/app9235064
- A Combined Method for Time-Varying Parameter Identification Based on Variational Mode Decomposition and Generalized Morse Wavelet vol.20, pp.7, 2014, https://doi.org/10.1142/s0219455420500777
- Identification of time-varying systems with partial acceleration measurements by synthesis of wavelet decomposition and Kalman filter vol.12, pp.6, 2014, https://doi.org/10.1177/1687814020930460
- Integration of identification and vibration control of time-varying structures subject to unknown seismic ground excitation vol.26, pp.15, 2014, https://doi.org/10.1177/1077546319896444