Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bundhoo, V., Haslam, E., Birch, B. and Park, E.J. (2008), A shape memory alloy-based tendondriven actuation System for biomimetic artificial fingers, Part I: Design and Evaluation, Cambridge University Press, Robotica.
- Duerig, T.W., Melton, K.N., Stockel, D. and Wayman, C.M. (1990), Engineering aspects of shape memory alloys, UK: Butterworth-Heinemann.
- Dynalloy, Inc. www.dynalloy.com/
- Furuya, Y., Shimada, H., Matsumoto, M. and Honma, T. (1988), "Cyclic deformation and degradation in shape memory effect of Ti-Ni wire", Jpn. Inst. Met., 52(2), 139-143. https://doi.org/10.2320/jinstmet1952.52.2_139
- Furuya, Y., Shimada, H., Matsumoto, M. and Honma, T. (1989), "Fatigue and degradation of shape memory effect in Ti-NiJ", Proceedings of the MRS International Meeting on Advanced Materials, Japan. 9.
- Gall, K. and Maier, H.J. (2002), "Cyclic deformation mechanisms in precipitated NiTi shape memory alloys", Acta Mater., 50(18), 4643-4657. https://doi.org/10.1016/S1359-6454(02)00315-4
- Hornbogen, E. (2004), "Thermo-mechanical fatigue of shape memory alloys", J. Mater. Sci., 39, 385-399. https://doi.org/10.1023/B:JMSC.0000011492.88523.d3
- Kohl, M. (2004), Shape Memory Microactuators, Springer-Verlag, Berlin Heidelberg.
- Kohl, M., Just, E., Pfleging, W. and Miyazaki, S. (2000), "SMA microgripper with integrated antagonism Sens", Sensor. Actuat. A- Phys., 83, 208-213. https://doi.org/10.1016/S0924-4247(99)00385-4
- Kyung, J.H., Ko, B.G., Ha, Y.H. and Chung, G.J. (2008), "Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges Sens", Sensor. Actuat. A- Phys., 141(1), 144-150. https://doi.org/10.1016/j.sna.2007.07.013
- Lan, C.C. and Fan, C.H. (2010), "Investigation on pretensioned shape memory alloy actuators for force and displacement self-sensing", Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taiwan.
- Lan, C.C. and Fan, C.H. (2010), "An accurate self-sensing method for the control of shape memory alloy actuated flexures", Sensor. Actuat. A- Phys., 163(1), 323-332. https://doi.org/10.1016/j.sna.2010.07.018
- Lan, C.C., Wang, J.H. and Fan, C.H. (2009), "Optimal design of rotary manipulators using shape memory alloy wire actuated flexures", Sensor. Actuat. A- Phys., 153(2), 258-266. https://doi.org/10.1016/j.sna.2009.05.019
- Lan, C.C. and Yang, Y.N. (2009), "A computational design method for a shape memory alloy wire actuated compliant finger", J. Mech. Design, 131(2), 021009. https://doi.org/10.1115/1.3042152
- Ma, N., Song, G. and Lee, H. (2004), "Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks", Smart Mater. Struct., 13(4), 777-783. https://doi.org/10.1088/0964-1726/13/4/015
- Otsuka, K. and Wayman, C.M. (1998), Shape Memory Materials, Cambridge University Press, New York.
- Romano, R. and Tannuri, EA. (2009), "Modeling, control and experimental validation of a novel actuator based on shape memory alloys", Mechatronics, 19(7), 1169-1177. https://doi.org/10.1016/j.mechatronics.2009.03.007
- Scherngell, H. and Kneissl, A.C. (1998), "Training and stability of the intrinsic two-way shape memory effect in Ni-Ti alloys", Scripta Materialia, 39(2), 205-212. https://doi.org/10.1016/S1359-6462(98)00155-9
- Schiedeck, F. and Mojrzisch, S. (2011), "Design of a robust control strategy for the heating power of shape memory alloy actuators at full contraction based on electric resistance feedback", Smart Mater. Struct., 20(4), 45002-45012 (11). https://doi.org/10.1088/0964-1726/20/4/045002
- Sofla, A. Elzey, D. and Wadley, H. (2008), "Cyclic degradation of antagonistic shape memory actuated structures", Smart Mater. Struct., 17(2), doi:10.1088/0964-1726/17/2/025014.
- Song, G. (2007), "Design and control of a nitinol wire actuated rotary servo", Smart Mater. Struct., 16(5), 1796-1801. https://doi.org/10.1088/0964-1726/16/5/034
- Sreekumar, M., Nagarajan, T. and Singaperumal, M. (2008), "Experimental investigations of the large deflection capabilities of a compliant parallel mechanism actuated by shape memory alloy wires", Smart Mater. Struct., 17(6), 065025. https://doi.org/10.1088/0964-1726/17/6/065025
- Teh, Y.H. and Featherstone, R. (2008), "An architecture for fast and accurate control of shape memory alloy actuators", Int. J. Robot. Res., 27(5), 595-611. https://doi.org/10.1177/0278364908090951
- Wang, T.M., Shi, Z.Y., Liu, D., Ma, C. and Zhang, Z.H. (2012), "An accurately controlled antagonistic shape memory alloy actuator with self-sensing", Sensors, 12(6), 7682-7700. https://doi.org/10.3390/s120607682
- Wang, Z., Hang, G., Li, J., Wang, Y. and Xiao, K. (2008), "A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin Sens", Sensor. Actuat. A- Phys., 144, 354-360. https://doi.org/10.1016/j.sna.2008.02.013