DOI QR코드

DOI QR Code

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M. (Department of Mechanics, Sun Yat-sen University) ;
  • Liu, J.K. (Department of Mechanics, Sun Yat-sen University)
  • Received : 2012.07.14
  • Accepted : 2013.08.31
  • Published : 2014.11.25

Abstract

The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

Keywords

Acknowledgement

Supported by : NSFC

References

  1. Anishchenko, V.S., Astakhov, V.V., Neiman, A.B. et al. (2002), Nonlinear dynamics of chaotic and stochastic systems, Springer-Verlag Berlin Heidelberg.
  2. Ashhab, M., Salapaka, M.V., Dahleh, M. and Mezic, I. (1999), "Dynamic analysis and control of microcantilevers", Automatica, 35, 1663-1670. https://doi.org/10.1016/S0005-1098(99)00077-1
  3. Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  4. Borzi, B., Vona, M., Masi, A. et al. (2013), "Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses", Eartq. Struct., 4(2).
  5. Chan, E.K. and Dutton, R.W. (2000), "Electrostatic micromechanical actuator with extended range of travel", J. Microelectromech. S., 9(3), 321-328. https://doi.org/10.1109/84.870058
  6. Chen, Y.M., Meng, G. and Liu, J.K. (2010), "An iterative method for nonlinear dynamical system of an electrostatically actuated micro-cantilver", Phys. Lett. A, 374, 3455-3459. https://doi.org/10.1016/j.physleta.2010.06.068
  7. De, S.K. and Aluru, N.R. (2006), "Complex nonlinear oscillations in electrostatically actuated microstructures", J. Microelectromech. S., 15(2), 355-369. https://doi.org/10.1109/JMEMS.2006.872227
  8. Feigenbaum, M. (1978), "Qualitative universality for a chaos of nonlinear transformations", T. Stat. Phys., 19, 5-32.
  9. Ferri, A.A. (1986), "On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton Raphson method", J. Appl. Mech, - ASME, 53, 455-457. https://doi.org/10.1115/1.3171780
  10. Fu, Y.M. and Zhang, J. (2009), "Nonlinear static and dynamic response of an electrically actuated viscoelastic microbeam", Acta Mech. Sinca, 25(2), 211-218. https://doi.org/10.1007/s10409-008-0216-4
  11. Hassani, F.A., Payam, A.F. and Fathipour, M. (2010), "Design of a smart MEMS accelerometer using nonlinear control principles", Smart Struct. Syst., 6(1), 1-16. https://doi.org/10.12989/sss.2010.6.1.001
  12. Hornstein, S. and Gottlieb, O. (2008), "Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy", Nonlinear Dynam., 54, 93-122. https://doi.org/10.1007/s11071-008-9335-5
  13. Hu, S.Q. and Raman, A. (2006), "Chaos in atomic force microscopy", Phys. Rev. Lett., 96, 036107. https://doi.org/10.1103/PhysRevLett.96.036107
  14. Kacem, N., Arcamone, J., Perez-Murano, F. and Hentz, S. (2010), "Dynamic range enhancement of nonlinear nanomechanical resonant cantilever for highly sensitive NEMS gas/mass sensor applications", J. Micromech. Microeng., 20(4), 1-9, 045023.
  15. Lau, S.L. and Cheung, Y.K. (1981), "Amplitude incremental variational principle for nonlinear vibration of elastic systems", J. Appl. Mech. - ASME, 48(4), 959-964. https://doi.org/10.1115/1.3157762
  16. Leung, A.Y.T. and Fung, T.C. (1990), "Construction of chaotic regions", J. Sound Vib., 131(3), 445-455.
  17. Liu, S., Davidson, A. and Liu, Q. (2003), "Simulating nonlinear dynamics and chaos in a MEMS cantilever using Poincare mapping", Proceedings of the IEEE, Transducers'03, the 12th International Conference on Solid State Sensors Actuators and Microsystems, Boston, 8-12 June.
  18. Liu, S., Davidson, A. and Liu, Q. (2004), "Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system", J. Micromech. Microeng., 14(7), 1064-1073. https://doi.org/10.1088/0960-1317/14/7/029
  19. Lyshevski, S.E. (1997), "Nonlinear microelectromechanic systems (MEMS) analysis and design via the Lyapunov stability theory", Proceeding of the 40th IEEE Conference on Decision and Control Orlando, FL USA.
  20. Mahmoodi, S.N. and Jalili, N. (2009), "Piezoelectrically actuated microcantilevers: An experimental nonlinear vibration analysis", Sens. Actuat. A, 150(1), 131-136. https://doi.org/10.1016/j.sna.2008.12.013
  21. Manna, M.C., Bhattacharyya, R. and Sheikh, A.H. (2010), "Nonlinear dynamic response and its control of rubber components with piezoelectric patches/layers using finite element method", Smart Struct. Syst., 6(8), 89-903.
  22. Meng, G., Zhang, W.M., Huang, H., Li, H.G. and Chen, D. (2009), "Micro-rotor dynamics for micro-electro-mechanical systems (MEMS)", Chaos Soliton. Fract., 40(2), 538-562. https://doi.org/10.1016/j.chaos.2007.08.003
  23. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S. and El-Borgi, S. (2010a), "Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode", J. Vib. Control, 16(9), 13-21.
  24. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S. and El-Borgi, S. (2010b), "Dynamics and global stability of beam-based electrostatic microactuators", J. Vib. Control, 16(5), 721-748. https://doi.org/10.1177/1077546309106521
  25. Nayfeh, A.H. and Younis, M.I. (2005), "Dynamics of MEMS resonators under superharmonic and subharmonic excitations," J. Micromech. Microeng., 15(10), 1840-1847. https://doi.org/10.1088/0960-1317/15/10/008
  26. Nayfeh, A.H., Younis, M.I. and Abdel-Rahman, E.M. (2007), "Dynamic pull-in phenomenon in MEMS resonators", Nonlinear Dynam., 48(1-2), 153-163. https://doi.org/10.1007/s11071-006-9079-z
  27. Passiana, A., Muralidharana, G., Mehtaa, A., Simpson, H., Ferrell, T.L. and Thundat, T. (2003), "Manipulation of microcantilever oscillations", Ultramicroscopy, 97(1-4), 391-399. https://doi.org/10.1016/S0304-3991(03)00066-4
  28. Price, R.H., Wood, J.E. and Jacobsen, S.C. (1989), "Modeling considerations for electrostatic forces in electrostatic microactuators", Sensor. Actuat. A, 20(1-2), 107-114. https://doi.org/10.1016/0250-6874(89)87108-2
  29. Raghothama, A. and Narayanan, S. (1999), "Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method", J. Sound Vib., 226(3), 493-517. https://doi.org/10.1006/jsvi.1999.2260
  30. Senturia, S.D. (1998), "Simulation and design of microsystems: a 10-year preserve", Sens. Actuat. A, 67, 1-7. https://doi.org/10.1016/S0924-4247(97)01754-8
  31. Shen, J.H., Lin, K.C., Chen, S.H. and Sze, K.Y. (2008), "Bifurcation and route-to-chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method", Nonlinear Dynam., 52(4), 403-414. https://doi.org/10.1007/s11071-007-9289-z
  32. Towfighian, S., Hppler, G.R. and Abdel-Rhman, E.M. (2011), "Analysis of a chaotic electrostatic micro-oscillator", J. Comput. Nonlinear Dyn., 6(1), 1-10, 011001 https://doi.org/10.1115/1.4002086
  33. Urabe. M. (1965) "Galerkin's procedure for nonlinear periodic systems", Arch. Ration. Mech. An., 20(2), 120-152.
  34. Waris, M.B. and Ishihara, T. (2012), "Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model", Coupled Syst. Mech., 1(3), 247-268. https://doi.org/10.12989/csm.2012.1.3.247
  35. Xu, L., Lu, M.W. and Cao, Q. (2003) "Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise nonlinearities by incremental harmonic balance method", J. Sound Vib., 264(4), 873-882. https://doi.org/10.1016/S0022-460X(02)01194-X
  36. Zhang, W.M. and Meng, G. (2005), "Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS", Sens. Actuat. A, 119(2), 291-299. https://doi.org/10.1016/j.sna.2004.09.025
  37. Zhang, W.M., Meng, G. and Chen, D. (2007), "Stability, nonlinearity and reliability of electrostatically actuated MEMS devices", Sensors, 7, 760-796. https://doi.org/10.3390/s7050760

Cited by

  1. Identification of an Airfoil-Store System with Cubic Nonlinearity via Enhanced Response Sensitivity Approach pp.1533-385X, 2018, https://doi.org/10.2514/1.J057195