Acknowledgement
Supported by : NSFC
References
- Anishchenko, V.S., Astakhov, V.V., Neiman, A.B. et al. (2002), Nonlinear dynamics of chaotic and stochastic systems, Springer-Verlag Berlin Heidelberg.
- Ashhab, M., Salapaka, M.V., Dahleh, M. and Mezic, I. (1999), "Dynamic analysis and control of microcantilevers", Automatica, 35, 1663-1670. https://doi.org/10.1016/S0005-1098(99)00077-1
- Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Borzi, B., Vona, M., Masi, A. et al. (2013), "Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses", Eartq. Struct., 4(2).
- Chan, E.K. and Dutton, R.W. (2000), "Electrostatic micromechanical actuator with extended range of travel", J. Microelectromech. S., 9(3), 321-328. https://doi.org/10.1109/84.870058
- Chen, Y.M., Meng, G. and Liu, J.K. (2010), "An iterative method for nonlinear dynamical system of an electrostatically actuated micro-cantilver", Phys. Lett. A, 374, 3455-3459. https://doi.org/10.1016/j.physleta.2010.06.068
- De, S.K. and Aluru, N.R. (2006), "Complex nonlinear oscillations in electrostatically actuated microstructures", J. Microelectromech. S., 15(2), 355-369. https://doi.org/10.1109/JMEMS.2006.872227
- Feigenbaum, M. (1978), "Qualitative universality for a chaos of nonlinear transformations", T. Stat. Phys., 19, 5-32.
- Ferri, A.A. (1986), "On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton Raphson method", J. Appl. Mech, - ASME, 53, 455-457. https://doi.org/10.1115/1.3171780
- Fu, Y.M. and Zhang, J. (2009), "Nonlinear static and dynamic response of an electrically actuated viscoelastic microbeam", Acta Mech. Sinca, 25(2), 211-218. https://doi.org/10.1007/s10409-008-0216-4
- Hassani, F.A., Payam, A.F. and Fathipour, M. (2010), "Design of a smart MEMS accelerometer using nonlinear control principles", Smart Struct. Syst., 6(1), 1-16. https://doi.org/10.12989/sss.2010.6.1.001
- Hornstein, S. and Gottlieb, O. (2008), "Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy", Nonlinear Dynam., 54, 93-122. https://doi.org/10.1007/s11071-008-9335-5
- Hu, S.Q. and Raman, A. (2006), "Chaos in atomic force microscopy", Phys. Rev. Lett., 96, 036107. https://doi.org/10.1103/PhysRevLett.96.036107
- Kacem, N., Arcamone, J., Perez-Murano, F. and Hentz, S. (2010), "Dynamic range enhancement of nonlinear nanomechanical resonant cantilever for highly sensitive NEMS gas/mass sensor applications", J. Micromech. Microeng., 20(4), 1-9, 045023.
- Lau, S.L. and Cheung, Y.K. (1981), "Amplitude incremental variational principle for nonlinear vibration of elastic systems", J. Appl. Mech. - ASME, 48(4), 959-964. https://doi.org/10.1115/1.3157762
- Leung, A.Y.T. and Fung, T.C. (1990), "Construction of chaotic regions", J. Sound Vib., 131(3), 445-455.
- Liu, S., Davidson, A. and Liu, Q. (2003), "Simulating nonlinear dynamics and chaos in a MEMS cantilever using Poincare mapping", Proceedings of the IEEE, Transducers'03, the 12th International Conference on Solid State Sensors Actuators and Microsystems, Boston, 8-12 June.
- Liu, S., Davidson, A. and Liu, Q. (2004), "Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system", J. Micromech. Microeng., 14(7), 1064-1073. https://doi.org/10.1088/0960-1317/14/7/029
- Lyshevski, S.E. (1997), "Nonlinear microelectromechanic systems (MEMS) analysis and design via the Lyapunov stability theory", Proceeding of the 40th IEEE Conference on Decision and Control Orlando, FL USA.
- Mahmoodi, S.N. and Jalili, N. (2009), "Piezoelectrically actuated microcantilevers: An experimental nonlinear vibration analysis", Sens. Actuat. A, 150(1), 131-136. https://doi.org/10.1016/j.sna.2008.12.013
- Manna, M.C., Bhattacharyya, R. and Sheikh, A.H. (2010), "Nonlinear dynamic response and its control of rubber components with piezoelectric patches/layers using finite element method", Smart Struct. Syst., 6(8), 89-903.
- Meng, G., Zhang, W.M., Huang, H., Li, H.G. and Chen, D. (2009), "Micro-rotor dynamics for micro-electro-mechanical systems (MEMS)", Chaos Soliton. Fract., 40(2), 538-562. https://doi.org/10.1016/j.chaos.2007.08.003
- Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S. and El-Borgi, S. (2010a), "Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode", J. Vib. Control, 16(9), 13-21.
- Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., Choura, S. and El-Borgi, S. (2010b), "Dynamics and global stability of beam-based electrostatic microactuators", J. Vib. Control, 16(5), 721-748. https://doi.org/10.1177/1077546309106521
- Nayfeh, A.H. and Younis, M.I. (2005), "Dynamics of MEMS resonators under superharmonic and subharmonic excitations," J. Micromech. Microeng., 15(10), 1840-1847. https://doi.org/10.1088/0960-1317/15/10/008
- Nayfeh, A.H., Younis, M.I. and Abdel-Rahman, E.M. (2007), "Dynamic pull-in phenomenon in MEMS resonators", Nonlinear Dynam., 48(1-2), 153-163. https://doi.org/10.1007/s11071-006-9079-z
- Passiana, A., Muralidharana, G., Mehtaa, A., Simpson, H., Ferrell, T.L. and Thundat, T. (2003), "Manipulation of microcantilever oscillations", Ultramicroscopy, 97(1-4), 391-399. https://doi.org/10.1016/S0304-3991(03)00066-4
- Price, R.H., Wood, J.E. and Jacobsen, S.C. (1989), "Modeling considerations for electrostatic forces in electrostatic microactuators", Sensor. Actuat. A, 20(1-2), 107-114. https://doi.org/10.1016/0250-6874(89)87108-2
- Raghothama, A. and Narayanan, S. (1999), "Non-linear dynamics of a two-dimensional airfoil by incremental harmonic balance method", J. Sound Vib., 226(3), 493-517. https://doi.org/10.1006/jsvi.1999.2260
- Senturia, S.D. (1998), "Simulation and design of microsystems: a 10-year preserve", Sens. Actuat. A, 67, 1-7. https://doi.org/10.1016/S0924-4247(97)01754-8
- Shen, J.H., Lin, K.C., Chen, S.H. and Sze, K.Y. (2008), "Bifurcation and route-to-chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method", Nonlinear Dynam., 52(4), 403-414. https://doi.org/10.1007/s11071-007-9289-z
- Towfighian, S., Hppler, G.R. and Abdel-Rhman, E.M. (2011), "Analysis of a chaotic electrostatic micro-oscillator", J. Comput. Nonlinear Dyn., 6(1), 1-10, 011001 https://doi.org/10.1115/1.4002086
- Urabe. M. (1965) "Galerkin's procedure for nonlinear periodic systems", Arch. Ration. Mech. An., 20(2), 120-152.
- Waris, M.B. and Ishihara, T. (2012), "Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model", Coupled Syst. Mech., 1(3), 247-268. https://doi.org/10.12989/csm.2012.1.3.247
- Xu, L., Lu, M.W. and Cao, Q. (2003) "Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise nonlinearities by incremental harmonic balance method", J. Sound Vib., 264(4), 873-882. https://doi.org/10.1016/S0022-460X(02)01194-X
- Zhang, W.M. and Meng, G. (2005), "Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS", Sens. Actuat. A, 119(2), 291-299. https://doi.org/10.1016/j.sna.2004.09.025
- Zhang, W.M., Meng, G. and Chen, D. (2007), "Stability, nonlinearity and reliability of electrostatically actuated MEMS devices", Sensors, 7, 760-796. https://doi.org/10.3390/s7050760
Cited by
- Identification of an Airfoil-Store System with Cubic Nonlinearity via Enhanced Response Sensitivity Approach pp.1533-385X, 2018, https://doi.org/10.2514/1.J057195