DOI QR코드

DOI QR Code

임계수준 방법을 이용한 물 부족량-지속기간-빈도 곡선의 제안 및 적용

Proposal and Application of Water Deficit-Duration-Frequency Curve using Threshold Level Method

  • 성장현 (국토교통부 영산강홍수통제소 예보통제과) ;
  • 정은성 (서울과학기술대학교 건설시스템디자인공학과)
  • Sung, Jang Hyun (Infrastructure and Transport, Yeongsan River Flood Control Office) ;
  • Chung, Eun-Sung (Department of Civil Engineering, Seoul National University of Science & Technology)
  • 투고 : 2014.07.28
  • 심사 : 2014.09.24
  • 발행 : 2014.11.30

초록

본 연구에서는 연 최저 유입량과 연 최대 부족량 자료를 이용하여 수문학적 가뭄을 평가하였고, 수자원 시설의 계획 및 관리에 이용할 수 있도록 물 부족량-지속기간-빈도 곡선을 제안하였다. 연 최저 유입량 분석결과, 대부분의 지속기간에서 1989년, 1996년 수문학적 가뭄의 재현기간이 가장 길었다. 연 최대 부족량 분석결과, 비교적 짧은 지속기간인 60일, 90일 부족량의 재현기간은 1982년에서 약 35년으로 가장 길게 나타났으며, 길게 지속되었던 수문학적 가뭄은 1995년으로 재현기간은 약 20년이었다. 가뭄은 크기와 함께 지속기간도 주요한 변수이지만 연 최저 유입량을 이용한 방법은 지속기간을 구분하지 못한다는 단점이 확인되었다.

This study evaluated hydrological drought the using the annual minimum flow and the annual maximum deficit method and proposed the new concept of water deficit-duration-frequency curves similar to rainfall intensity-duration-frequency curves. The analysis results of the annual minimum flow, the return periods of hydrological drought in the most duration of 1989 and 1996yr were the longest. The analysis results of the annual maximum deficit, the return periods of 60-days and 90-day deficit which are relatively short duration were the longest in 1995yr, about 35-year, Hydrological drought lasted longer was in 1995, the return period was about 20-year. Though duration as well as magnitude is a key variable in drought analysis, it was found that the method using the annual minimum flow duration not distinguish duration.

키워드

참고문헌

  1. Bonaccorso, B., Cancelliere, A., and Rossi, G. (2003). "An analytical formulation of return period of drought severity." Stochastic Environmental Research and Risk Assessment, Vol. 17, No. 3, pp. 157-174. https://doi.org/10.1007/s00477-003-0127-7
  2. De Michele, C., Salvadori, G., Vezzoli, R., and Pecora, S. (2013). "Multivariate assessment of droughts: Frequency analysis and dynamic return period." Water Resources Research, Vol. 49, No. 10, pp. 6985-6994. https://doi.org/10.1002/wrcr.20551
  3. Gonzalez, J., and Valdes, J.B. (2003). "Bivariate drought recurrence analysis using tree ring reconstructions." Journal of Hydrologic Engineering, Vol. 8, No. 5, pp. 247-258. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:5(247)
  4. Hisdal, H., Stahl, K., Tallaksen, L.M., and Demuth, S. (2001). "Have streamflow droughts in Europe become more severe or frequent?." International Journal of Climatology, pp. 21, pp. 317-333. https://doi.org/10.1002/joc.619
  5. Hosking, J.R., and Wallis, J.R. (1997). Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge, U.K.
  6. Hosking, J.R., Wallis, J.R., and Wood, E.F. (1985) "Estimation of the GEV distribution by the method of probability-weighted moment." Technometrics, Vol. 27, No. 3, pp. 251-261. https://doi.org/10.1080/00401706.1985.10488049
  7. Kjeldsen, T.R., Lundorf, A., and Dan, R. (2000). "Use of two component exponential distribution in partial duration modeling of hydrological droughts in Zimbabwean rivers." Hydrological Sciences Journal, Vol. 45, No. 2, pp. 285-298. https://doi.org/10.1080/02626660009492325
  8. Martin, E.S., and Stedinger, J.R. (2000). "Generalized maximum likelihood GEV quantile estimator for hydrologic data." Water Resources Research, Vol. 28, No. 11, pp. 3001-3010.
  9. Mishra, A.K., and Singh, V.P. (2009). "Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty." Journal of Geophysical Research, Vol. 114, No. D6, 2009, p. D06120. doi:10.1029/2008JD010986.
  10. Song, S.B., and Singh, V.P. (2010a). "Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm." Stochastic Environmental Research and Risk Assessment, Vol. 24, pp.783-805. https://doi.org/10.1007/s00477-010-0364-5
  11. Song, S.B., and Singh, V.P. (2010b). "Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data." Stochastic Environmental Research and Risk Assessment, Vol. 24, pp. 425-444. https://doi.org/10.1007/s00477-009-0331-1
  12. Stedinger, J.R., Vogel, R.M., and Foufoula-Georgiou, E. (1993). Chapter 18, Frequency analysis of extreme events, Handbook of Hydrology, edited by Maidment, D. R., McGraw-Hill.
  13. Sung, J.H., and Chung, E.-S. (2014a). "Application of streamflow drouhgt index using threshold level method." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 491-500. (in korean) https://doi.org/10.3741/JKWRA.2014.47.5.491
  14. Sung, J.H., and Chung, E.-S. (2014b). "Development of streamflow drought severity-duration-frequency curves using the threshold level method." Hydrology and Earth System Sciences, 18, pp. 3341-3351. https://doi.org/10.5194/hess-18-3341-2014
  15. Sung, J.H., Kang, H.-K., Park, S.-H., Cho, C-.H., Bae, D-.H., and Kim, Y.-O. (2012). "Project of extreme precipitation in Korea at the end of the 21st century based on RCP." Korean Meteorological Society, Vol. 22, No. 2, pp. 221-231. (in korean)
  16. Tallaksen, L.M., and Van Lanen, H.A.J. (2004). Hydrological drought: processes and estimation methods for streamflow and groundwater. Developments in Water Science 48, Elsevier Science B.V., The Netherlands.
  17. Tallaksen, L.M., Madsen, H., and Clausen, B. (1997). "On the definition and modelling of streamflow drought duration and deficit volume." Hydrological Sciences Journal, Vol. 42, pp. 15-33. https://doi.org/10.1080/02626669709492003