DOI QR코드

DOI QR Code

Swap-Insert Algorithm for Driver Scheduling Problem

운전기사 일정계획 문제의 교환-삽입 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2014.08.19
  • Accepted : 2014.09.17
  • Published : 2014.11.29

Abstract

This paper suggests O(m) polynomial time heuristic algorithm to obtain the solution for the driver scheduling problem, DSP, that has been classified as NP-complete problem. The proposed algorithm gets the initial assignment of n minimum number of drivers from given m schedules. Nextly, this algorithm gets the minimum total time (TC) using 5 rules of swap and insert for decrease of over times (OT) and idle times (IT). Although this algorithm is a heuristic polynomial time algorithm with O(m) time complexity rules to be find a optimal (or approximate) solution, this algorithm is equal to metaheuristic methods for the 5 experimental data. To conclude, this paper shows the DSP is not NP-complete problem but Polynomial time (P)-problem with polynomial time rules.

본 논문은 NP-완전인 DSP에 대해 O(m)의 다항시간으로 근사 해를 찾는 규칙을 제시한 휴리스틱 알고리즘을 제안하였다. 제안된 알고리즘은 m개의 주어진 운행계획에 대해, 최소의 운전기사인 n명을 배정한 초기 배정 결과를 얻는다. 다음으로, 교환 또는 삽입의 5개 규칙들을 적용하여 초과시간 (OT)과 유휴시간 (IT)를 감소시켜 최소의 비용 (TC)을 얻었다. 제안된 알고리즘은 최적 (또는 근사) 해를 찾는 규칙을 제안한 O(m) 복잡도의 휴리스틱 다항시간 알고리즘임에도 불구하고, 5개의 실험 데이터에 적용한 결과 메타 휴리스틱 기법들과 필적하는 결과를 얻었다. 결론적으로, 본 논문에서는 CSP에 있어서 최적 해를 찾아가는 규칙이 전혀 없는 NP-완전이 아닌 다항시간의 규칙이 존재하는 P-문제가 될 수 있음을 보였다.

Keywords

References

  1. A.Wren, S. Fores, A. Kwan, R. Kwan,M. Parker, and L. Proll, "A Flexible Systemfor Scheduling Drivers," Journal of Scheduling, Vol. 6, No. 5, pp. 437-455, Sep. 2003. https://doi.org/10.1023/A:1024854522373
  2. H. R. Lourenco, J. P. Paixao, and R. Portugal, "Multiobjective Metaheuristics for the Bus-Driver Scheduling Problem," Transportation Science, Vol. 35, No. 3, pp. 331-343, Jun. 2001. https://doi.org/10.1287/trsc.35.3.331.10147
  3. S. Groot and D. Huisman, "Vehicle and Crew Scheduling Solving Large Real-World Instances with an Integrated Approach," 9th International Conference onComputer-Aided Scheduling of Public Transport, San Diego, California, Lecture Notes in Economics and Mathematical Systems, Vol. 600, pp 43-56, 2008.
  4. G. R.Mauri and L. A. N. Lorena, "Driver Scheduling Generation Using a Population Training Algorithm," Brazilian Symposiumin Neural Networks, Sao Luis, Maranhao, Brazil, pp. 1-6, Sep. 2004.
  5. G. R. Mauri and L. A. N. Lorena, "A New Hybrid Heuristic forDriver Scheduling," International Journal of Hybrid Intelligent Systems, Vol. 4, No. 1, pp. 39-47, Jan. 2007. https://doi.org/10.3233/HIS-2007-4105
  6. H. R. Lourenco, J. P. Paixao, and R. Portugal, "Metaheuristics for theBus-Driver SchedulingProblem," Department of Economics and Management, Universitat Pompeu Fabra, Vol. 35, pp. 1-26, Jul. 1998.
  7. Y. Shen and R. S. K. Kwan, "Tabu Search for Driver Scheduling," Computer-Aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Springer-Velag, Berlin, Vol. 505, pp. 121-135, 2001.
  8. T. G. Dias, J. P. Sousa, and J. F. Cunha, "AGenetic Algorithmfor the Bus Driver Scheduling Problem," 4th InternationalConference of Metaheuristics, pp. 35-40, Jul. 2001.
  9. R. Bai, J. Li, J. Atkin, and G. Kendall, "A Novel Approach to Independent Taxi Scheduling Problem Based on Stable Matching," Journal of Operational Research Society, pp. 1-10, Sep. 2013.
  10. R. Portugal, H. R. Lourenco, and J. P. Paixao, "Driver Scheduling ProblemModeling," Public Transportation, Vol. 1, No. 2, pp. 103-120, Jun. 2009. https://doi.org/10.1007/s12469-008-0007-0
  11. B. Laurent, V. Guihaire, and J. K. Hao, "AHeuristic Solution for a Driver-Vehicle Scheduling Problem," Proceedings of Operations Research, Vol. 2005, pp. 703-708, 2005.
  12. R. Leone, P. Festa, and E.Marchitto, "A Bus Driver Scheduling Problem: ANewMathematicalModel and GRASP Approximate Solution," Journal of Heuristics, Vol. 17, No. 4, pp. 441-466, Aug. 2011. https://doi.org/10.1007/s10732-010-9141-3
  13. L. T. Shung, R. Ramli, and H. Ibrahim, "An Evolutionary Algorithm Approach to a Bus Driver Scheduling Problemwith Break-Time Consideration," Proceedings of the 5th Asian Mathematical Conference, Malaysia, pp. 652-658, Jun. 2009.
  14. R. M. Karp, "Reducibility Among Combinatorial Problems," In Complexity of Computer Computations, Plenum Press, New York, pp. 85-103, 1972.
  15. L. A. N. Lorena, "Problem Instances: Driver Scheduling," http://www.lac.inpe.br/-lorena/ nstancias.html, 2014.