DOI QR코드

DOI QR Code

Sign Language Recognition System Using SVM and Depth Camera

깊이 카메라와 SVM을 이용한 수화 인식 시스템

  • Received : 2014.09.19
  • Accepted : 2014.10.28
  • Published : 2014.11.29

Abstract

In this paper, we propose a sign language recognition system using SVM and depth camera. Especially, we focus on the Korean sign language. For the sign language system, we suggest two methods, one in hand feature extraction stage and the other in recognition stage. Hand features are consisted of the number of fingers, finger length, radius of palm, and direction of the hand. To extract hand features, we use Distance Transform and make hand skeleton. This method is more accurate than a traditional method which uses contours. To recognize hand posture, we develop the decision tree with the hand features. For more accuracy, we use SVM to determine the threshold value in the decision tree. In the experimental results, we show that the suggested method is more accurate and faster when extracting hand features a recognizing hand postures.

본 논문에서는 깊이 카메라를 이용한 사용자의 손 모양 인식 시스템을 제안한다. 특히, 본 시스템에서 이용된 손 모양 템플릿은 수화 언어 중 한국어를 채택 하였다. 손 모양 인식 시스템은 손의 특징 검출과 특징들을 이용한 손 인식으로 크게 2 단계의 작업으로 나눌 수 있다. 손의 특징으로는 손가락의 개수, 길이, 손바닥의 넓이 등이 있다. 특징을 추출하기 위해 본 논문에서는 거리 변환(Distance Transform)을 이용한 손의 뼈대 검출 방법을 제안한다. 이 방법을 사용하면 기존의 윤곽선(Contour)을 이용한 손가락 검출보다 정확도 측면에서 향상된다. 손 모양 인식으로 손의 특징을 이용하여 각 분기를 잘 나눌 수 있는 결정 트리(Decision Tree)를 사용한다. 사용자의 입력을 이용하면 분기값이 정확하게 나오지 못하므로 이 분기 값을 결정하기 위해 해당 분기마다 SVM을 이용하여 분기값을 결정하였다. 실험결과에서는 기존의 연구 방법보다 제안된 방법이 특징 추출과 인식하는데 있어 더욱 개선되었음을 보인다.

Keywords

References

  1. Zaki, Mahmoud M., and Samir I. Shaheen. "Sign language recognition using a combination of new vision based features." Pattern Recognition Letters, Vol. 32, No. 4 pp. 572-577, March 2011. https://doi.org/10.1016/j.patrec.2010.11.013
  2. Yang, Ruiduo, and Sudeep Sarkar. "Coupled grouping and matching for sign and gesture recognition." Computer Vision and Image Understanding, Vol. 113, No. 6, pp. 663-681, June 2009. https://doi.org/10.1016/j.cviu.2008.09.005
  3. Juang, Chia-Feng, Shih-Hsuan Chiu, and Shen-Jie Shiu. "Fuzzy system learned through fuzzy clustering and support vector machine for human skin color segmentation." IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 37, No.6, pp. 1077-1087, November 2007. https://doi.org/10.1109/TSMCA.2007.904579
  4. Juang, Chia-Feng, and Ksuan-Chun Ku. "A recurrent fuzzy network for fuzzy temporal sequence processing and gesture recognition." IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 35, No. 4 pp. 646-658, August 2005.
  5. Yang, Ming-Hsuan, Narendra Ahuja, and Mark Tabb. "Extraction of 2d motion trajectories and its application to hand gesture recognition." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 8 pp. 1061-1074, August 2002. https://doi.org/10.1109/TPAMI.2002.1023803
  6. Nolker, Claudia, and Helge Ritter. "Visual recognition of continuous hand postures." IEEE Transactions on Neural Networks, Vol. 13, No. 4 pp. 983-994, July 2002. https://doi.org/10.1109/TNN.2002.1021898
  7. Fang, Yikai, et al. "A real-time hand gesture recognition method." IEEE International Conference on Multimedia and Expo, pp. 995-998, July 2007.
  8. Suryanarayan, Poonam, Anbumani Subramanian, and Dinesh Mandalapu. "Dynamic hand pose recognition using depth data." Pattern Recognition (ICPR), 20th International Conference on. IEEE, pp. 3105-3108, August 2010.
  9. Ren, Zhou, Junsong Yuan, and Zhengyou Zhang. "Robust hand gesture recognition based on finger-earth mover's distance with a commodity depth camera." Proceedings of the 19th ACM international conference on Multimedia. ACM, pp. 1093-1096, November 2011.
  10. Zabulis, Xenophon, Haris Baltzakis, and Antonis Argyros. "Vision-based hand gesture recognition for human-computer interaction." The Universal Access Handbook. LEA, pp. 1-56, June 2009.
  11. Zafrulla, Zahoor, et al. "A novel approach to american sign language (asl) phrase verification using reversed signing." IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 48-55, June 2010.