DOI QR코드

DOI QR Code

적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images

  • 투고 : 2014.06.19
  • 심사 : 2014.09.19
  • 발행 : 2014.11.29

초록

본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.

In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

키워드

참고문헌

  1. Jae Hyup Kim, Gyu Hee Park, Jun Ho Jeong, and Young Shik Mood, "Gunnery Classification Method using Shape Feature of Profile and GMM," Journal of IEEK CI, Vol. 48, No. 5, pp. 16-23, Nov. 2011.
  2. Sun-Gu Sun, Hyun Wook Park, "Automatic Target Recognition by selecting similarity-transform- invariant local and global features," Journal of IEEK SP, Vol. 3, No. 4, pp. 10-20, July 2002.
  3. K. Mikolajczyk and C. Schmid, "A performance evaluation of local descriptors," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, no. 10, pp. 1615-1630, 2005. https://doi.org/10.1109/TPAMI.2005.188
  4. D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision ,Vol. 60, no. 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  5. H. Bay, T. Tuytelaars, and L. V. Gool, "Surf: Speeded up robust features," Proc. of European Conference on Computer Vision, Vol. 3951, pp. 404-417, 2006.
  6. D. Lowe, "Object recognition from local scale-invariant features", Proc. of ICCV, 1999.
  7. H. Bay, Beat Fasel, and Luc Van Gool, "Interactive museum guide: Fast and robust recognition of museum objects," Proc. of First International Workshop on Mobile Vision, 2006.
  8. H. Tamimi, H. Andreasson, A. Treptow, T.Duckett, and A. Zell, "Localization of mobile robots with omnidirectional vision using particle filter and iterative SIFT," Proc. of 2nd European Conf. on Mobile Robots(ECMR'05), September 2005.
  9. A. C. Murillo, J. J. Guerrero, and C. Sagues, "SURF Features for Efficient Robot Localization with Omnidirectional Images," Proc. of IEEE Int'l Conf. on Robotics and Automation, pp. 3901-3907, 2007.
  10. S. Se, D. Lowe, and J. Little. "Vision-based mobile robot localization and mapping using scale-invariant feature," Proc. of the International Conference on Robotics & Automation(ICRA), 2001.
  11. M. Cummins and P. Newman, "FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance," International Journal of Robotics Research, Vol. 27, No. 6, pp. 647-665, 2008. https://doi.org/10.1177/0278364908090961
  12. Hyunsup Yoon, Youngjoon Han, and Hernsoo Hahn, "Extended SURF Algorithm with Color Invariant Feature and Global Feature," Journal of IEEK SP, Vol. 46, No. 6, pp. 58-67, Nov. 2009.
  13. Minku Kang, Wonkook Choo, and Seungbin Moon, "Face Recognition based on SURF Interest Point Extraction Algorithm," Journal of IEEK CI, Vol. 48, No. 3, pp. 58-67, May 2011.
  14. P. A. Viola and M. J. Jones, "Rapid object detection using a boosted cascade of simple features," Proc. of CVPR, pp. 511-518, 2001.
  15. J. Shi and C. Tomasi, "Good Features to Track," Proc. of Computer Vision and Pattern Recognition, pages 593-600, 1994.
  16. C. Harris and M.J. Stephens, "A combined corner and edge detector," In Alvey Vision Conference, pp. 147-152, 1988.
  17. N. Arica et al, "BAS: a perceptual shape descriptor based on the beam angle statistics," Pattern Recognition Letters, Vol. 24, pp. 1627-1639, 2003. https://doi.org/10.1016/S0167-8655(03)00002-3
  18. Young-Gu Lee and Woo-Seung Choi, "Learning Networks for Learning the Pattern Vectors Causing Classification Error," Journal of KSCI, Vol. 10, No. 5, pp. 77-86, Nov. 2005.
  19. S. K. Kang, Y. U. Kim, I. M. So, and S. T. Jung, "Enhancement of the Correctness of Marker Detection and Marker Recognition based on Artificial Neural Networks," Journal of KSCI, Vol. 13, No. 1, pp. 89-97, Jan. 2008.
  20. Kwang Seong Kim and Doosung Hwang, "Support Vector Machine Algorithm for Imbalanced Data learning," Journal of KSCI, Vol. 15, No. 7, pp. 11-17, July 2010. https://doi.org/10.9708/jksci.2010.15.7.011