참고문헌
- Ahmed, S.F.U. (2013), "Properties of concrete containing construction and demolition wastes and fly ash", J. Mater. Civ. Eng., ASCE, 25(12), 1864-1870. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000763
- Al-Shamrani, M.A. (2005), "Applying the hyperbolic method and Ca/Cc concept for settlement prediction of complex organic-rich soil formations", Eng. Geology, 77, 17-34. https://doi.org/10.1016/j.enggeo.2004.07.004
- Atis, C.D., Karahan, O., Ari, K., Sola, O.C. and Bilim, C. (2009), "Relation between Strength Properties (Flexuraland Compressive) and Abrasion Resistance of Fiber (Steel and Polypropylene)-Reinforced Fly Ash Concrete", J. Mater. Civ. Eng., ASCE, 21(8), 402-408. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:8(402)
- Barbuta, M., Diaconescu, R.M and Harja, M. (2012), "Using Neural Networks for Prediction of Properties of Polymer Concrete with Fly Ash", J. Mater. Civ. Eng., ASCE, 24(5), 523-528. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000413
- Boscardin, M.C., Selig, E.T., Lin, R.S. and Yang, G.R. (1990), "Hyperbolic parameters for compacted soils", Journal of Geotechnical Engineering, ASCE, 116 (1), 88-104. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(88)
- Cheng, A., Hsu, H.M., Chao, S.J. and Lin, K.L. (2011), "Experimental Study on Properties of Pervious Concrete Made with Recycled Aggregate", Int. J. Pav. Res. Technol. , 4(2), 104-110.
- Ciou, S.S. (2009), "A study on the high temperature properties of cement mortar with waste liquid crystal glass powder", Master Dissertation, National Kaohsiung University of Applied Sciences, Kaohsiung.
- Dapena, E., Alaejos, P., Lobet, A. and Perez, D. (2011), "Effect of Recycled Sand Content on Characteristics of Mortars and Concretes", J. Mater. Civ. Eng., ASCE, 23(4), 414-422. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000183
- Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soil", J. Soil Mech. Found. Div., ASCE, 96(SM5), 1629-1653.
- Gao, Y.Y., Liu, L.P. and Wang, Y.J. (2008), "LCD panel manufacturing waste resource status of Comment. Green Foundation newsletters", special reports.
- Huang, W.L. (2009), "A study on waste LCD glass applied in self-compacting concrete", Master Dissertation, National Kaohsiung University of Applied Sciences, Kaohsiung.
- Hwang, K., Noguchi, T. and Tomosawa, F. (1999), "Numerical prediction model for compressive strength development of concrete containing fly ash", J. Struct. Constr. Eng., Architect. Inst. Japan, 519, 1-6.
- Ismail, Z.Z. and Hashmi, E.A.A. (2009), "Recycling of waste glass as a partial replacement for fine aggregate in concrete", Waste Manage., 29, 655-659. https://doi.org/10.1016/j.wasman.2008.08.012
- Konder, R.L. (1963), "Hyperbolic stress-strain response: cohesive soils", J. Soil Mech. Found. Div., ASCE, 89 (1), 115-143.
- Kou, S.C. and Poon, C.S. (2009), "Properties of self-compacting concrete prepared with recycled glass aggregate", Cement Concrete Compos, 31, 107-113. https://doi.org/10.1016/j.cemconcomp.2008.12.002
- Kumar, B., Tike, G.K. and Nanda, P.K. (2007), "Evaluation of Properties of High-Volume Fly-Ash Concrete for Pavements", J. Mater. Civ. Eng., ASCE, 19(10), 906-911. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(906)
- Lewis, C.D. (1982), Industrial and Business Forecasting Method., London: Butterworth Scientific Publishers, London.
- Lin, K.L. (2007), "The effect of heating temperature of thin film transistor-liquid crystal display (TFT-LCD) electric-optical waste glass substitute partial clay as eco-brick", J. Cleaner Product., 15, 1755-1759. https://doi.org/10.1016/j.jclepro.2006.04.002
- Lin, K.L., Huang, W.J., Shie, J.L., Lee, T.C., Wang, K.S. and Lee, C.H. (2009), "The utilization of thin film transistor liquid crystal display waste glass as a pozzolanic material", J. Hazard. Mater, 163, 916-921. https://doi.org/10.1016/j.jhazmat.2008.07.044
- Lin, K.L., Shiu, H.S., Shie, J.L., Cheng, T.W. and Hwang, C.L. (2012), "Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin -based geopolymers", Constr. Build. Mater., 36, 501-507. https://doi.org/10.1016/j.conbuildmat.2012.05.018
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "New predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45, 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Murat, P., Erdogan, O., Ahmet, O. and Ishak Yuce, M. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21, 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009
- Park, S.B., Lee, B.C. and Kim, J.H. (2004), "Studies on mechanical properties of concrete containing waste glass aggregate", Cement Concrete Res., 34, 2181-2189. https://doi.org/10.1016/j.cemconres.2004.02.006
- Shah, A.A., Alsayed, S.H., Abbas, H. and Al-Salloum, Y.A. (2012), "Predicting residual strength of non-linear ultrasonically evaluated damaged concrete using artificial neural network", Constr. Build. Mater., 29, 42-50. https://doi.org/10.1016/j.conbuildmat.2011.10.038
- Sridharan, A. and Rao, S.N. (1972), "Hyperbolic representation of strength, pore pressures and volume changes with axial strain in triaxial tests", Proceedings of the Symposium on Strength and Deformation Behaviour of Soils, Bangalore, India, 33-42.
- Stark, T.D., Ebling, R.M. and Vettel, J.J. (1994), "Hyperbolic stress-strain parameters for silts", J. Geotech.Eng., ASCE, 120 (2), 420-441. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(420)
- Tang, C.W. (2014), "Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments", Comput. Concr., 13(2), 149-171. https://doi.org/10.12989/cac.2014.13.2.149
- Terro, M.J. (2006), "Properties of concrete made with recycled crushed glass at elevated temperatures", Build. Environ., 41, 633-639. https://doi.org/10.1016/j.buildenv.2005.02.018
- Topcu, I.B. and Canbaz, M. (2004), "Properties of concrete containing waste glass", Cement Concrete Res., 34, 267-274. https://doi.org/10.1016/j.cemconres.2003.07.003
- Vahid, K.A. and Mohammad, T. (2010), "Prediction of 28-day compressive strength of concrete on the third day using artificial neural networks", Int. J. Eng., 3(6), 565-576.
- Wang, C.C. (2001), "Time-dependent hyperbolic model for clayey soil", J. Chinese Inst. Civil Hydraulic Engineering ,Chinese, August.
- Wang, C.C., Chen, T.T., Wang, H.Y. and Huang, C. (2014), "A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression", Comput. Concr., 13(4), 531-545. https://doi.org/10.12989/cac.2014.13.4.531
- Wang, H.Y. (2009), "A study of the engineering properties of waste LCD glass applied to controlled low strength materials concrete", Constr. Build. Mater., 23, 2127-2131. https://doi.org/10.1016/j.conbuildmat.2008.12.012
- Wang, H.Y. (2011), "The effect of the proportion of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute for cement in cement mortar", Constr. Build. Mater., 25, 791-797. https://doi.org/10.1016/j.conbuildmat.2010.07.004
- Wang, H.Y. and Chen, J.S. (2008), "Study of thin film transition liquid crystal display(TFT-LCD) optical waste glass applied in early-high-strength controlled low strength materials", Comput. Concr., 5, 491-501. https://doi.org/10.12989/cac.2008.5.5.491
- Wang, H.Y. and Huang, W.L. (2010a), "A study on the properties of fresh self-consolidating glass concrete (SCGC)", Constr. Build. Mater., 24, 619-624. https://doi.org/10.1016/j.conbuildmat.2009.08.047
- Wang, H.Y. and Huang, W.L. (2010b), "Durability of self-consolidating concrete is using waste LCD glass", Constr. Build. Mater., 24, 1008-1013. https://doi.org/10.1016/j.conbuildmat.2009.11.018
- Wang, H.Y., Chen, J.S., Wang, S.Y., Chen, Z.C. and Chen, F.L. (2007), "A study on the mix proportion and properties of wasted LCD glass applied to controlled low strength materials concrete (CLSM)", J. Taiwan Concrete Institute.
피인용 문헌
- Modelling of the compressive strength development of cement mortar with furnace slag and desulfurization slag from the early strength vol.128, 2016, https://doi.org/10.1016/j.conbuildmat.2016.10.083
- Assessment of the compressive strength of recycled waste LCD glass concrete using the ultrasonic pulse velocity vol.137, 2017, https://doi.org/10.1016/j.conbuildmat.2017.01.117
- Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass vol.132, 2017, https://doi.org/10.1016/j.conbuildmat.2016.11.103
- Prediction models of compressive strength and UPV of recycled material cement mortar vol.19, pp.4, 2014, https://doi.org/10.12989/cac.2017.19.4.419
- Prediction model of resistivity and compressive strength of waste LCD glass concrete vol.19, pp.5, 2014, https://doi.org/10.12989/cac.2017.19.5.467
- Prediction of expansion of electric arc furnace oxidizing slag mortar using MNLR and BPN vol.20, pp.1, 2014, https://doi.org/10.12989/cac.2017.20.1.111
- Establishment of the Controlled Low-Strength Desulfurization Slag Prediction Model for Compressive Strength and Surface Resistivity vol.10, pp.16, 2014, https://doi.org/10.3390/app10165674
- Effective utilization of e-waste plastics and glasses in construction products - a review and future research directions vol.176, pp.None, 2014, https://doi.org/10.1016/j.resconrec.2021.105936