Acknowledgement
Supported by : Ministry of Communications
References
- Banthia, N. and Nandakumar, N. (2003), "Crack growth resistance of hybrid fiber reinforced cement composites", Cement Concrete Compos., 25(1), 3-9. https://doi.org/10.1016/S0958-9465(01)00043-9
- Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Beuth, J.J. (1992), "Cracking of thin bonded films in residual tension", Int. J. Solids Struct., 29(13), 1657-1675. https://doi.org/10.1016/0020-7683(92)90015-L
- Chahine, E., Laborde, P. and Renard, Y. (2008), "Crack tip enrichment in the XFEM using a cutoff function", Int. J. Numer. Meth. Eng., 75(6), 629-646. https://doi.org/10.1002/nme.2265
- Dugdale, D. (1960), "Yielding of steel sheets containing slits", J. Mech. Phys. Solids, 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- ASTM E399-08 A (2009), Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, West Conshohocken, PA, 19428-2959 USA.
- EN T. 196-3 (2002), Methods of testing cement-part 3: determination of setting time and soundness. Turkish Standards Institution, Turkey.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
- Hutchinson, J. and Suo, Z. (1991), "Mixed mode cracking in layered materials", Adv. Appl. Mech., 29(63), 163-191.
- Ince, R. (2010), "Artificial neural network-based analysis of effective crack model in concrete fracture", Fatigue. Fract. Eng. Mater. Struct., 33(9), 595-606.
- Ince, R. (2010), "Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes", Eng. Fract. Mech., 77(12), 2233-2250. https://doi.org/10.1016/j.engfracmech.2010.05.007
- Jenq, Y. and Shah, S.P. (1985), "Two parameter fracture model for concrete", J. Eng. Mech. ASCE, 111(10), 1227-1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
- Jolivet, D., Bonen, D.M. and Shah, S.P. (2007), "The corrosion resistance of coated steel dowels determined by impedance spectroscopy", Cement Concrete Res, 37(7), 1134-1143. https://doi.org/10.1016/j.cemconres.2007.04.004
- Kaplan, M. (1961), "Crack propagation and the fracture of concrete", ACI Journal proceedings: ACI, December.
- Katz, A. and Bentur, A. (1994), "Mechanical properties and pore structure of carbon fiber reinforced cementitious composites", Cement Concrete Res., 24(2), 214-220. https://doi.org/10.1016/0008-8846(94)90046-9
- Kesler, C.E., Naus, D.J. and Lott, J.L. (1972), "Fracture mechanics-its applicability to concrete", Proceedings of the Society of Materials Science Conference on the Mechanical Behavior of Materials, 113-124, May.
- Kumar, S. and Barai, S.V. (2009). "Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function", Eng. Fract. Mech., 76(7), 935-948. https://doi.org/10.1016/j.engfracmech.2008.12.018
- Kumar, S. and Pandey, S.R. (2012), "Determination of double-K fracture parameters of concrete using split-tension cube test", Comput. Concr., 9(2), 81-97. https://doi.org/10.12989/cac.2012.9.2.081
- Ngo, D. and Scordelis, A. (1967), "Finite element analysis of reinforced concrete beams", ACI Journal Proceedings: ACI, March.
- Oh, B. and BAZANT, Z. (1983), "Crack band theory for fracture of concrete", Mater. Struct., January-February, 155-177.
- Raju, I. (1987), "Calculation of strain-energy release rates with higher order and singular finite elements", Eng. Fract. Mech., 28(3), 251-274. https://doi.org/10.1016/0013-7944(87)90220-7
- Ramli, M., Kwan, W.H. and Abas, N.F. (2013), "Strength and durability of coconut-fiber-reinforced concrete in aggressive environments", Constr . Build. Mater., 38, 554-566. https://doi.org/10.1016/j.conbuildmat.2012.09.002
- Rashid, Y. (1968), "Ultimate strength analysis of prestressed concrete pressure vessels", Nucl. Eng. Des., 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6
- Rouchier, S., Foray, G., Godin, N., Woloszyn, M. and Roux, J.J. (2013), "Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission", Constr. Build. Mater., 38, 371-380. https://doi.org/10.1016/j.conbuildmat.2012.07.106
- Rybicki, E.F. and Kanninen, M. (1977), "A finite element calculation of stress intensity factors by a modified crack closure integral", Eng. Fract. Mech., 9(4), 931-938. https://doi.org/10.1016/0013-7944(77)90013-3
- Tada, H., Paris, P.C. and Irwin, G.R. (2000), The stress analysis of cracks handbook, ASME Press, New York, U.S.A.
- Tavakoli, M. (1994), "Tensile and compressive strengths of polypropylene fiber reinforced concrete", ACI Spec. Publication, 142, 61-72.
- Toutanji, H.A. (1999), "Properties of polypropylene fiber reinforced silica fume expansive-cement concrete", Constr. Build. Mater., 13(4), 171-177. https://doi.org/10.1016/S0950-0618(99)00027-6
- Unger, J.F., Eckardt, S. and Konke, C. (2007). "Modelling of cohesive crack growth in concrete structures with the extended finite element method", Comput. Meth. Appl. Mech. Eng., 196(41-44), 4087-4100. https://doi.org/10.1016/j.cma.2007.03.023
- Xu, S. and Reinhardt, H.W. (1999a), "Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I: Experimental investigation of crack propagation", Int. J. Fract., 98(2), 111-149. https://doi.org/10.1023/A:1018668929989
- Xu, S. and Reinhardt, H.W. (1999b), "Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams", Int. J. Fract., 98(2), 151-177. https://doi.org/10.1023/A:1018740728458
- Xu, S. and Reinhardt, H.W. (1999c), "Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part III: Compact tension specimens and wedge splitting specimens", Int. J. Fract., 98(2), 179-193. https://doi.org/10.1023/A:1018788611620
- Xu, S. and Reinhardt, H.W. (2000), "A simplified method for determining double-K fracture parameters for three-point bending tests", Int. J. Fract, 104(2),181-209. https://doi.org/10.1023/A:1007676716549
- Zhang, X., Xu, S. and Zheng, S. (2007), "Experimental measurement of double-K fracture parameters of concrete with small-size aggregates", Front. Architect. Civil Eng. China, 1(4), 448-457. https://doi.org/10.1007/s11709-007-0061-8
- Zhu, W., Ling, L., Tang, C., Kang, Y. and Xie, L. (2012), "The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression", Comput. Concr., 9(4), 257-273. https://doi.org/10.12989/cac.2012.9.4.257
Cited by
- Mechanical and Durability Performance of Polyacrylonitrile Fiber Reinforced Concrete vol.18, pp.6, 2015, https://doi.org/10.1590/1516-1439.021915
- Performance of concrete structures with a combination of normal SCC and fiber SCC vol.20, pp.6, 2014, https://doi.org/10.12989/cac.2017.20.6.655
- Mixed Mode I-II Fracture Path and Initiation Angle of Concrete at Mesoscale Level vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/4236521
- Mechanical Performance and Numerical Simulation of Basalt Fiber Reinforced Concrete (BFRC) Using Double-K Fracture Model and Virtual Crack Closure Technique (VCCT) vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5630805
- Effect of Sand Size on Mechanical Performance of Cement-Based Composite Containing PVA Fibers and Nano-SiO 2 vol.13, pp.2, 2020, https://doi.org/10.3390/ma13020325
- Effects of nanoparticles on engineering performance of cementitious composites reinforced with PVA fibers vol.9, pp.1, 2014, https://doi.org/10.1515/ntrev-2020-0038
- Modeling of the Complex Modulus of Asphalt Mastic with Biochar Filler Based on the Homogenization and Random Aggregate Distribution Methods vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2317420
- Effects of UEA and MgO expansive agents on fracture properties of concrete vol.263, pp.None, 2014, https://doi.org/10.1016/j.conbuildmat.2020.120245
- Review on different testing methods and factors affecting fracture properties of fiber reinforced cementitious composites vol.273, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2020.121766
- Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach vol.14, pp.7, 2021, https://doi.org/10.3390/ma14071745
- Influential factors for double-K fracture parameters analyzed by the round robin tests of RILEM TC265-TDK vol.54, pp.6, 2014, https://doi.org/10.1617/s11527-021-01791-x
- Comparative analysis of the effects of aggregates and fibres on the fracture performance of lightweight aggregate concrete based on types I and II fracture test methods vol.117, pp.None, 2022, https://doi.org/10.1016/j.tafmec.2021.103202