DOI QR코드

DOI QR Code

Cardiac Magnetic Resonance Imaging Using Multi-physiological Intelligent Trigger System

멀티 생체신호 동기 시스템을 이용한 심장자기공명영상

  • Park, Jinho (Department of Electrical Engineering, Kwangwoon University) ;
  • Yoon, Jong-Hyun (Department of Electrical Engineering, Kwangwoon University) ;
  • Yang, Young-Joong (Department of Electrical Engineering, Kwangwoon University) ;
  • Ahn, Chang-Beom (Department of Electrical Engineering, Kwangwoon University)
  • Received : 2014.07.02
  • Accepted : 2014.07.24
  • Published : 2014.09.30

Abstract

Purpose : We proposed a multi-physiological signals based real-time intelligent triggering system(MITS) for Cardiac MRI. Induced noise of the system was analyzed. Materials and Methods: MITS makes cardiac MR imaging sequence synchronize to the cardiac motion using ECG, respiratory signal and second order derivative of $SPO_2$signal. Abnormal peaks due to arrhythmia or subject's motion are rejected using the average R-R intervals and R-peak values. Induced eddy currents by gradients switching in cardiac MR imaging are analyzed. The induced eddy currents were removed by hardware and software filters. Results: Cardiac MR images that synchronized to the cardiac and respiratory motion are acquired using MITS successfully without artifacts caused by induced eddy currents of gradient switching or subject's motion or arrhythmia. We showed that the second order derivative of the $SPO_2$ signal can be used as a complement to the ECG signals. Conclusion: The proposed system performs cardiac and respiratory gating with multi-physiological signals in real time. During the cardiac gating, induced noise caused by eddy currents is removed. False triggers due to subject's motion or arrhythmia are rejected. The cardiac MR imaging with free breathing is obtained using MITS.

목적 : 멀티 생체신호를 이용한 지능형 실시간 심장과 호흡에 동기화 하는 시스템을 사용하여 심장자기공명영상을 수행하였다. 또한 멀티 생체신호를 측정하는 과정에서 유기될 수 있는 eddy current의 특성을 분석하였다. 대상 및 방법 : 멀티 생체신호 동기화 시스템에서는 심전도 신호와 호흡신호 외에 추가로 $SPO_2$ 정보를 수집하여 심장의 움직임에 동기화 하였다. 심장운동의 동기화는 심전도와 함께 $SPO_2$의 이차미분 신호를 이용할 수 있음을 보였다. 심장 동기화 과정에서 피검자의 움직임과 부정맥에 의해 발생할 수 있는 잘못된 동기신호를 평균 R-R 시간을 이용하여 제거하였다. 심장 영상화를 위한 시퀀스에서 경사자계의 스위칭에 의해 유기될 수 있는 eddy current의 특성을 분석하여 하드웨어 및 소프트웨어 필터로 차단하였다. 결과 : 제안된 동기화 시스템을 이용하여 심장과 호흡 운동에 동기화된 심장자기공명영상을 얻었다. 심전도 신호에서 피검자의 움직임과 부정맥에 의해 발생할 수 있는 동기신호를 차단하였고, 심장 영상화 과정에서 유기될 수 있는 eddy current를 제거하였다. 또한 심전도 신호를 보완하여 $SPO_2$의 이차미분신호를 이용하여 심장 영상이 가능함을 보였다. 결론 : 본 논문에서 제안한 멀티 생체신호 동기화 시스템은 심장자기공명영상을 위해 여러 생체신호 (심전도, $SPO_2$, 호흡)를 이용하여 실시간으로 심장과 호흡 동기화를 수행한다. 심전도에서 피검사자의 움직임과 부정맥에 의해 발생할 수 있는 동기 신호를 차단하였다. 경사자계의 스위칭에 의해 생체신호에 유기될 수 있는 eddy current를 분석하였고, 심장과 호흡 동기를 병행하여 피검사자가 자유롭게 호흡하면서 심장 영상을 얻을 수 있었다.

Keywords

References

  1. Vivian S. Cardiovascular MRI: Physical Principles to Practical Protocols. Philadelphia: Lippincott Williams & Wilkins 2006:257-265
  2. Kaus MR, Berg JV, Weese J, Niessen W, Pekar V. Automated segmentation of the left ventricle in cardiac MRI. Med Imag Anal 2004;8:245-254 https://doi.org/10.1016/j.media.2004.06.015
  3. Amparo EG, Higgins CB, Farmer D, Gamsu G, McNamara M. Gated MRI of cardiac and paracardiac masses: initial experience. AJR Am J Roentgenol 1984;143:1151-1156 https://doi.org/10.2214/ajr.143.6.1151
  4. Yang YJ, Park J, Hong HJ, Ahn CB. Multi-biological Signalbased Smart Trigger System for Cardiac MRI. Trans KIEE to be published, 2014
  5. Moghari, MH, Roujol S, Chan RH, et al. Free-breathing 3D cardiac MRI using iterative image-based respiratory motion correction. Magn Reson Med 2013;70:1005-1015 https://doi.org/10.1002/mrm.24538
  6. Pang J, Bhat H, Sharif B, et al. Whole-heart coronary MRA with 100% respiratory gating efficiency: Self-navigated threedimensional retrospective image-based motion correction (TRIM). Magn Reson Med 2014;71:67-74 https://doi.org/10.1002/mrm.24628
  7. Vaninbroukx J, Bosmans H, Sunaert S, et al. The use of ECG and respiratory triggering to improve the sensitivity of oxygenenhanced proton MRI of lung ventilation. Eur Radiol 2003;13:1260-1265
  8. Li XA, Stepaniak C, Gore E. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys 2006;33:145-154 https://doi.org/10.1118/1.2147743
  9. Kandpal H, Sharma R, Madhusudhan KS, Kapoor KS. Respiratory-triggered versus breath-hold diffusion-weighted MRI of liver lesions: comparison of image quality and apparent diffusion coefficient values. AJR Am J Roentgenol 2009;192:915-922 https://doi.org/10.2214/AJR.08.1260
  10. Udupa JK, Murthy IS. Syntactic approach to ECG rhythm analysis. IEEE Trans Biomed Eng 1980;27:370-375
  11. Chang KM. Arrhythmia ECG noise reduction by ensemble empirical mode decomposition. Sensors 2010;10:6063-6080 https://doi.org/10.3390/s100606063
  12. Wiesmann F, Szimtenings M, Frydrychowicz A, et al. Highresolution MRI with cardiac and respiratory gating allows for accurate in vivo atherosclerotic plaque visualization in the murine aortic arch. Magn Reson Med 2003;50:69-74 https://doi.org/10.1002/mrm.10500
  13. Laudon MK, Webster JG, Frayne R, Grist TM. Minimizing interference from magnetic resonance imagers during electrocardiography. IEEE Trans Biomed Eng 1998;45:160-164 https://doi.org/10.1109/10.661264
  14. Ahn CB, Kim PK. Method and apparatus for detecting feature points using distribution of feature points in second derivative of photoplethysmogram waveform. Korean Patent 2011;10-1036233
  15. Worthley SG, Helft G, Fayad ZA, et al. Cardiac gated breathhold black blood MRI of the coronary artery wall: an in vivo and ex vivo comparison. Int J Cardiovasc Imaging 2001;17:195-201 https://doi.org/10.1023/A:1010688122184
  16. Hofman MB, Paschal CB, Li D, Haacke EM, van Rossum AC, Sprenger M. MRI of coronary arteries: 2D breath-hold vs 3D respiratory-gated acquisition. J Comput Assist Tomogr 1995;19:56-62 https://doi.org/10.1097/00004728-199501000-00011
  17. Ulvi H, Yoldas T, Yigiter R, Mungen B. R-R interval variation and the sympathetic skin response in the assessment of the autonomic nervous system in leprosy patients. Acta Neurol Scand 2003;107:42-49

Cited by

  1. Fast Cardiac CINE MRI by Iterative Truncation of Small Transformed Coefficients vol.19, pp.1, 2015, https://doi.org/10.13104/imri.2015.19.1.19