DOI QR코드

DOI QR Code

Effect of Water Content in the Substrate of the Scion and Rootstock during Pre- and Post-Grafting Period on the Survival Rate and Quality of Tomato Plug Seedlings

접목 전후 대목과 접수의 상토 내 수분함량이 토마토 플러그묘의 접목 활착율과 묘소질에 미치는 영향

  • Vu, Ngoc-Thang (Department of Horticulture, Kangwon National University) ;
  • Choi, Ki Young (College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University)
  • Received : 2014.07.25
  • Accepted : 2014.08.21
  • Published : 2014.09.30

Abstract

This study evaluated the effect of water content in the substrate during pre- and post-grafting period on the survival rate and quality of tomato plug seedlings. Nine combinations of three water levels (high, medium, and low) were set up in the substrate of both scion and rootstock. The water content in the substrate of the scion did not affect the survival rate of grafted tomato seedlings, while the survival rate was statically different among the various water contents in the substrate of the rootstock. The maximum survival rates (100%) were observed in seedlings treated with high water levels in the substrate of the rootstock, and the survival rates declined with decreasing water content in the rootstock substrate. The growth characteristics were not significantly affected by different water content in the scion substrate, while they were statically different among the seedlings treated with various water contents in the rootstock substrate. The growth characteristics decreased with decreasing water content in the rootstock substrate. The highest value of compactness was observed in grafted seedlings, which combined medium water level in the scion and high water level in the rootstock substrate treatment. The root morphology of tomato seedlings was also affected by water content in the rootstock substrate. The total root surface area, total root length, and number of root tips decreased with deceasing water content in the rootstock substrate.

본 실험은 토마토 플러그묘의 접목활착율과 묘소질 향상을 위한 적정 상토 내 수분함량을 구명하기 위하여 수행되었다. 시험구는 접수와 대목의 상토내 수분함량을 각각 3처리구(고, 중 저)씩, 총 9개의 조합을 설계하여 각 처리구별로 접목활착율과 묘의 생육을 조사하였다. 접수의 상토내 수분 함량의 차이는 접목 활착율에 통계적 유의차는 나타나지 않았으나, 대목의 수분함량은 접목활착율에 영향을 미쳐 수분함량이 낮아질수록 활착율도 저하하는 경향을 보였다. 수분 함량에 따른 묘소질도 접목활착율과 유사한 경향을 보여 접수의 수분함량차이는 생육지표에 큰 영향을 미치지 않았으나, 대목에서는 잎(엽수, 엽장, 엽폭)을 제외한 초장, SPAD함량, 경경은 수분함량의 차이에 따라 유의적 차이를 나타냈다. 묘의 충실도는 상토내 수분 함량이 접수는 중간, 대목은 높은 조합에서 가장 좋게 나타났다. 근권부의 생육에서도 대목의 수분함량이 주로 영향을 미쳐, 수분함량이 저하될수록 전 뿌리 표면적, 전 근장, root tip수 모두가 감소되는 것으로 나타났다.

Keywords

References

  1. Arsenault, J.L., S. Pouleur, C. Messier, and R. Guay. 1995. WinRHIZO, a root-measuring system with a unique overlap correction method. Hort.Sci. 30:906.
  2. Davis, A.R., P. Perkins-Veazie, Y. Sakata, S. L iopez-Galarza, J.V. Maroto, S.G. Lee, Y.C. Huh, Z.Y. Sun, A. Miguel, R.K. Stephen, R. Cohen, and J.M. Lee. 2008. Cucurbit grafting. Critical Rev. Plant Sci. 27:50-74. https://doi.org/10.1080/07352680802053940
  3. Kim, I.S., C.H. Zhang, H.M. Kang, B. Mackay. 2008. Control of stretching of cucumber and tomato plug seedlings using supplemental light. Hort. Environ. Biotechnol. 49:287-292.
  4. Kim, Y. H., C.S. Kim, J.W. Lee, and S.G. Lee. 2001. Effect of vapor pressure deficit on the evaportranspiration rate and graft-taking of grafted seedlings population under artificial lighting. J. Bio-Environ. Control 10: 232-236.
  5. Kuzmanoff, K.M. and M.L. Evans. 1981. Kinetics of adaptation to osmotic stress in lentil (Lens culinaris Med.) roots. Plant Physiol. 68:244-247. https://doi.org/10.1104/pp.68.1.244
  6. Lee, J and M. Oda. 2003. Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. 28:61-124.
  7. Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P. Hoyos Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting: Diffision, grafting techniques, automation. Scientia Hort. 127:93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  8. Mahmoud A, W.A., A. Abdullah A, and I. Abdullah A. 2011. Drought tolerance of several tomato genotypes under greenhouse conditions. World Applied Sci. J. 15:933-940.
  9. Nobuoka, T., T. Nishimoto, and K. Toi. 2005. Wind and light promote graft-take and growth of grafted tomato seedlings. J. Japan Soc. Hort. Sci. 74:170-175. https://doi.org/10.2503/jjshs.74.170
  10. Oda, M. 1999. Grafting of vegetables to improve greenhouse production. Food and Fertilizer Technology Centure Extension Bullentin 480:1-11.
  11. Rivero, R.M., J.M. Ruiz, and L. Romero. 2003. Role of grafting in horticultural plants under stress conditions. Food Agr. Environ. 1:70-74.
  12. Sharp, R.E. and W.J. Davies. 1979. Solute regulation and growth by roots and shoots of water-stressed maize plants.Planta. 147:43-49. https://doi.org/10.1007/BF00384589
  13. Sharp, R.E. and W.J. Davies. 1985. Root growth and water uptake by maize plants in drying soil. J. Exp. Bot. 36:1441-1456. https://doi.org/10.1093/jxb/36.9.1441
  14. Vu, N.T., C.H. Zhang, Z.H. Xu, Y.S. Kim, H.M. Kang, and I.S. Kim. 2013. Enhanced Survival rateand quality of grafted tomato seedlings by controlling temperature and humidity conditions. Protected Hort. Plant Fac. 22:146-153. https://doi.org/10.12791/KSBEC.2013.22.2.146
  15. Vu, N.T., Y.S. Kim, H.M. Kang, and I.S. Kim. 2014. Influence of short-term irradiation during pre- and post-grafting period on the graft-take ratio and quality of tomato seedlings. Hort. Environ. Biotechnol. 55:27-35. https://doi.org/10.1007/s13580-014-0115-5
  16. Yin, H., B. Yan, J. Sun, P.F. Jia, Z.J. Zhang, X.S. Yan, J. Chai, Z.Z. Ren, G.C. Zheng, and H. Liu. 2012. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J. Expt. Bot. 63:4219-4232. https://doi.org/10.1093/jxb/ers109