DOI QR코드

DOI QR Code

A SEXTIC-ORDER SIMPLE-ROOT FINDER WITH RATIONAL WEIGHTING FUNCTIONS OF DERIVATIVE-TO-DERIVATIVE RATIOS

  • Kim, Young Ik (Department of Applied Mathematics Dankook University)
  • Received : 2014.10.22
  • Accepted : 2014.11.10
  • Published : 2014.11.15

Abstract

A three-step sextic simple-root finder is constructed with the use of weighting functions of derivative-to-derivative ratios. Their convergence and computational properties are investigated along with concrete numerical examples to verify the theoretical analysis.

Keywords

References

  1. L. V. Ahlfors, Complex Analysis, McGraw-Hill Book, Inc, 1979.
  2. I. K. Argyros, D. Chen, and Q. Qian, The Jarratt method in Banach space setting, J. Comput. Appl. Math. 51 (1994), 103-106. https://doi.org/10.1016/0377-0427(94)90093-0
  3. W. Bi, Q. Wu, and H. Ren, A new family of eighth-order iterative methods for solving nonlinear equations, Appl. Math. Comput. 214 (2009), no. 4, 236-245. https://doi.org/10.1016/j.amc.2009.03.077
  4. C. Chun, Certain improvements of Chebyshev-Halley methods with accelerated fourth-order convergence, Appl. Math. Comput. 189 (2007), 597-601. https://doi.org/10.1016/j.amc.2006.11.118
  5. C. Chun, Some improvements of Jarratts method with sixth-order convergence, Appl. Math. Comput. 190 (2007), 1432-1437. https://doi.org/10.1016/j.amc.2007.02.023
  6. L. Fanga, T. Chen, L. Tian, L. Sun, and B. Chen, A modi ed Newton-type method with sixth-order convergence for solving nonlinear equations, Procedia Engineering 15 (2011), 3124-3128. https://doi.org/10.1016/j.proeng.2011.08.586
  7. Y. H. Geum and Y. I. Kim, A biparametric family of four-step sixteenth-order root- nding methods with the optimal eciency index, Appl. Math. Lett. 24 (2011), 1336-1342. https://doi.org/10.1016/j.aml.2011.03.004
  8. P. Jarratt, Multipoint iterative methods for solving certain equations, The Computer Journal 8 (1966), no. 4, 398-400.
  9. Y. I. Kim, A new two-step biparametric family of sixth-order iterative methods free from second derivatives for solving nonlinear algebraic equations, Appl. Math. Comput. 215 (2010), 3418-3424. https://doi.org/10.1016/j.amc.2009.10.036
  10. S. K. Parhi and D. K. Gupta, A sixth order method for nonlinear equations, Appl. Math. Comput. 203 (2008), 50-55. https://doi.org/10.1016/j.amc.2008.03.037
  11. Y. Peng, H. Feng, Q. Li, and X. Zhang, A fourth-order derivative-free algorithm for nonlinear equations, J. Comput. Appl. Math. 235 (2011), 2551-2559. https://doi.org/10.1016/j.cam.2010.11.007
  12. B. V. Shabat, Introduction to Complex Analysis PART II, Functions of Several Variables, American Mathematical Society (1992).
  13. F. Soleymani, Regarding the accuracy of optimal eighth-order methods, Math. Comput. Model. 53 (2011), 5-6, 1351-1357.
  14. J. F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company (1982).
  15. X. Wang, J. Kou, and Y. Li, A variant of Jarratt method with sixth-order convergence, Appl. Math. Comput. 204 (2008), 14-19. https://doi.org/10.1016/j.amc.2008.05.112
  16. S. Wolfram, The Mathematica Book(5th ed.), Wolfram Media, 2003.