Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Abu-Hilal, M. and Mohsen, M. (2000), "Vibration of beams with general boundary conditions due to a moving harmonic load", J. Sound Vib., 232(4), 703-717. https://doi.org/10.1006/jsvi.1999.2771
- Alshorbagy, A.E., Eltaher, M.A. and Mahmound, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Calim, F.F. (2009), "Free and forced vibrations of non-uniform composite beams", Comput. Struct., 88(3), 413-423. https://doi.org/10.1016/j.compstruct.2008.05.001
- Caruntu, D.I. (2009), "Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness", Mech. Res. Commun., 36(3), 391-404. https://doi.org/10.1016/j.mechrescom.2008.07.005
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34, 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005
- Gupta, A. (1985), "Vibration of tapered beams", J. Struct. Eng., 111(1), 19-36. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:1(19)
- Gutierrez, R.H., Laura, P.A.A. and Rossi, R.E. (1991), "Vibrations of a timoshenko beam of non-uniform cross-section elastically restrained at one end and carrying a finite mass at the other", Oce. Eng., 18(1-2), 129-145. https://doi.org/10.1016/0029-8018(91)90038-R
- Haasen, A.A., Abdelouahed, T., Sid, A.M. and Hichem, A.B. (2011), "Free vibration behavior of exponential functionally graded beams with varying cross-section", J. Vib. Cont., 17(2), 311-318. https://doi.org/10.1177/1077546310370691
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
- Klein, L. (1974), "Transverse vibrations of non-uniform beams", J. Sound Vib., 37(4), 491-505. https://doi.org/10.1016/S0022-460X(74)80029-5
- Lardner, T.J. (1968), "Vibration of beams with exponentially varying properties", Acta Mech., 6(2-3), 197-202. https://doi.org/10.1007/BF01170383
- Lee, S.Y. and Lin, S.M. (1995), "Vibrations of elastically restrained non-uniform timoshenko beams", J. Sound Vib., 184(3), 403-415. https://doi.org/10.1006/jsvi.1995.0324
- Mohanty, S.C., Dash, R.R. and Rout, T. (2011), "Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation", Nucl. Eng. Des., 241(8), 2698-2715. https://doi.org/10.1016/j.nucengdes.2011.05.040
- Mohanty, S.C., Dash, R.R. and Rout, T. (2012), "Vibration and dynamic stability analysis of a functionally graded timoshenko beam on pasternak elastic foundation", Int. J. Aero. Light. Struct., 2(3), 383-403.
- Mohanty, S.C., Dash, R.R. and Rout, T. (2013), "Free vibration of a functionally graded rotating timoshenko beam using FEM", Adv. Struct. Eng., 16(2), 405-418. https://doi.org/10.1260/1369-4332.16.2.405
- Pakar, M.B. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Ramalingerswara Rao, S. and Ganesan, N. (1995), "Dynamic response of tapered composite beams using higher order shear deformation theory", J. Sound Vib., 187(5), 737-756. https://doi.org/10.1006/jsvi.1995.0560
- Sen, Y.L. and Huel Yaw, K. (1990), "Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints", Comput. Struct., 34(3), 421-429. https://doi.org/10.1016/0045-7949(90)90266-5
- Simsek, M. and Cansiz, S. (2012), "Dynamics of elastically connected double-functionally graded beam systems with different boundary conditions under action of a moving harmonic load", Compos. Struct., 94(9), 2861-2878. https://doi.org/10.1016/j.compstruct.2012.03.016
- Suppiger, E. and Taleb, N. (1956), "Free lateral vibration of beams of variable cross section", J. Appl. Math. Phys., ZAMP, 7(6), 501-520. https://doi.org/10.1007/BF01601179
- Tong, X., Tabarrok, B. and Yeh, K.Y. (1995), "Vibration analysis of timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 186(5), 821-835. https://doi.org/10.1006/jsvi.1995.0490
- Wang, R.T. (1997), "Vibration of multi-span timoshenko beams to a moving force", J. Sound Vib., 207(5), 731-742. https://doi.org/10.1006/jsvi.1997.1188
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84, 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Zhou, D. (1993), "A general solution to vibrations of beams on variable winkler elastic foundation", Comput. Struct., 47(1), 83-90. https://doi.org/10.1016/0045-7949(93)90281-H
Cited by
- Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams vol.59, pp.6, 2016, https://doi.org/10.12989/sem.2016.59.6.1139
- Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory vol.10, pp.5, 2016, https://doi.org/10.12989/eas.2016.10.5.1033
- Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method vol.189, 2018, https://doi.org/10.1016/j.compstruct.2018.01.063
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method vol.40, pp.11, 2018, https://doi.org/10.1007/s40430-018-1460-6
- Free vibration of functionally graded beams resting on Winkler-Pasternak foundation vol.11, pp.10, 2018, https://doi.org/10.1007/s12517-018-3579-2
- Probabilistic Analysis on the Uncertainty in Natural Frequency of Functionally Graded Material Beams vol.889, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/amm.889.484
- Creep analysis of a rotating functionally graded simple blade: steady state analysis vol.33, pp.3, 2014, https://doi.org/10.12989/scs.2019.33.3.463
- An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061
- Accurate solution for functionally graded beams with arbitrarily varying thicknesses resting on a two-parameter elastic foundation vol.55, pp.7, 2020, https://doi.org/10.1177/0309324720922739