Acknowledgement
Supported by : Natural Science Foundation of China
References
- Bahrami, M.N., Arani, M.K. and Saleh, N.R. (2011), "Modified wave approach for calculation of natural frequencies and mode shapes in arbitrary non-uniform beams", Scientia Iranica, 18(5), 1088-1094. https://doi.org/10.1016/j.scient.2011.08.004
- Bambill, D.V., Rossit, C.A., Rossi, R.E., Felix, D.H. and Ratazzi, A.R. (2013), "Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions", Meccanica, 48(6), 1289-1311. https://doi.org/10.1007/s11012-012-9668-5
- Bedon, C. and Morassi, A. (2014), "Dynamic testing and parameter identification of a base-isolated bridge", Eng. Struct., 60(1-2), 85-99. https://doi.org/10.1016/j.engstruct.2013.12.017
- Burden, R.L. and Faires, J.D. (1997), Numerical Analysis, sixth edition, Brooks Cole Publishing Company, Pacific Grove, California, USA.
- Chen, D.W. and Wu, J.S. (2002), "The exact solution for the natural frequencies and mode shapes of nonuniform beams with multiple spring-mass systems", J. Sound Vib., 255(2), 299-322. https://doi.org/10.1006/jsvi.2001.4156
- Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, second edition, Computers and Structures, New York, USA.
- DeRosa, M.A., Franciosi, C. and Maurizi, M.J. (1996), "On the dynamic behavior of slender beams with elastic ends carrying a concentrated mass", Comput. Struct., 58(6), 1145-1159. https://doi.org/10.1016/0045-7949(95)00199-9
- Elishakoff, I. and Johnson, V. (2005), "Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass", J. Sound Vib., 286(4-5), 1057-1066. https://doi.org/10.1016/j.jsv.2005.01.050
- Kamke, E. (1980), Ordinary Differential Equation Manual, Science Press, Beijing, China.
- Firouz-Abadi, R.D., Haddadpour, H. and Novinzadeh, A.B. (2007), "An asymptotic solution to transverse free vibrations of variable-section beams", J. Sound Vib., 304(3-5), 530-540. https://doi.org/10.1016/j.jsv.2007.02.030
- Ho, S.H. and Chen, C.K. (1998), "Analysis of general elastically end restrained non-uniform beams using differential transform", Appl. Math. Model., 22(4-5), 219-234. https://doi.org/10.1016/S0307-904X(98)10002-1
- Hsu, J.C., Lai, H.Y. and Chen, C.K. (2008), "Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method", J. Sound Vib., 318(4-5), 965-981. https://doi.org/10.1016/j.jsv.2008.05.010
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Pratiher, B. (2012), "Vibration control of a transversely excited cantilever beam with tip mass", Arch. Appl. Mech., 82(1), 31-42. https://doi.org/10.1007/s00419-011-0537-9
- Jovanovic, V. (2011), "A Fourier series solution for the transverse vibration response of a beam with a viscous boundary", J. Sound Vib., 330(7), 1504-1515. https://doi.org/10.1016/j.jsv.2010.10.007
- Lee, S.Y. and Yhim, S.S. (2005), "Dynamic behavior of long-span box girder bridges subjected to moving loads: numerical analysis and experimental verification", Int. J. Solid. Struct., 42(18-19), 5021-5035. https://doi.org/10.1016/j.ijsolstr.2005.02.020
- Lou, M.L., Duan, Q.H. and Chen, G. (2005), "Modal perturbation method for the dynamic characteristics of Timoshenko beams", Shock Vib., 12(6), 425-434. https://doi.org/10.1155/2005/824616
- Lou, M.L. and Wu, J.N. (1997), "An approach solve dynamic problems of complicated beams", Shanghai J. Mech., 18(3), 234-240.
- Mao, Q.B. (2011), "Free vibration analysis of multiple-stepped beams by using Adomian decomposition method", Math. Comput. Model., 54(1), 756-764. https://doi.org/10.1016/j.mcm.2011.03.019
- Sarkar, K. and Ganguli, R. (2013), "Closed-form solutions for non-uniform Euler-Bernoulli free-free beams", J. Sound Vib., 332(23), 6078-6092. https://doi.org/10.1016/j.jsv.2013.06.008
- Pan, D.G., Chen, G.D. and Lou, M.L. (2012), "A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams", Struct. Eng. Mech., 40(5), 689-703. https://doi.org/10.12989/sem.2011.40.5.689
- Qian, B. and Yue, H.Y. (2011), "Numerical calculation of natural frequency of transverse vibration of nonuniform beam", Mech. Eng., 33(6), 45-49.
- Timoshenko, S. (1974), Vibration Problems in Engineering, fourth edition, John Wiley& Sons, New York, USA.
- Xia, J., Zhu, M.C. and Ma, D.Y. (2000), "Analysis of lateral natural vibration of beams with lumped masses and elastic supports", Mech. Eng., 22(5), 27-30.
- Yang, M.J., Qiao, P.Z., McLean, D.I. and Khaleghi, B. (2010), "Effects of overheight truck impacts on intermediate diaphragms in prestressed concrete bridge girders", PCI J., 55(1), 58-78. https://doi.org/10.15554/pcij.01012010.58.78
Cited by
- Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams vol.59, pp.6, 2016, https://doi.org/10.12989/sem.2016.59.6.1139
- Free vibration analysis of continuous bridge under the vehicles vol.61, pp.3, 2014, https://doi.org/10.12989/sem.2017.61.3.335