참고문헌
- Agnew, S.R. and Weertman, J.R. (1998), "Cyclic softening of ultrafine grain copper", Mater. Sci. Eng. A, 244, 145-153. https://doi.org/10.1016/S0921-5093(97)00689-8
- Aliha, M.R.M., Heidari-Rarani, M., Shokrieh, M.M. and Ayatollahi, M.R. (2012) "Experimental determination of tensile strength and KIc of polymer concretes using semi-circular bend (SCB) specimens.", Struct. Eng. Mech., 43(6), 823-834. https://doi.org/10.12989/sem.2012.43.6.823
- Anderson, T.L. (1994), Fracture mechanics: fundamentals and application, 2nd Edition, CRC Press, New York, Washington D.C., USA.
- Furukawa, M., Horita, Z. and Langdon, T.G. (2001a), "Substructures of deformation twins and twin intersections in a Ti-45Al-8Nb-2.5Mn alloy heavily deformed at room temperature", Mater. Sci. Eng. A, 299, 267-274. https://doi.org/10.1016/S0921-5093(00)01379-4
- Furukawa, M., Horita, Z. and Langdon, T.G. (2001b), "Application of equal-channel angular pressing", J. Mater. Res., 16, 583-589. https://doi.org/10.1557/JMR.2001.0084
- Iwahashi, Y., Horita, Z., Nemoto, M. and G Langdon, T. (1998), "The process of grain refinement in equalchannel angular pressing", Acta Mater., 46(9), 3317-3331. https://doi.org/10.1016/S1359-6454(97)00494-1
- Khodabakhshi, F., Kazeminezhad, M. and Kokabi, A.H. (2010), "Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties", Mater. Sci. Eng. A, 527, 4043-4049. https://doi.org/10.1016/j.msea.2010.03.005
- Krishnaiah, A., Chakkingal, U. and Venugopal, P. (2005), "Applicability of the groove pressing technique for grain refinement in commercial purity copper", Mater. Sci. Eng. A, 410, 337-340.
- Krishnaiah, A., Chakkingal, U. and Venugopal, P. (2005), "Production of ultrafine grain sizes in aluminum sheets by severe plastic deformation using the technique of groove pressing", Mater. Sci., 52, 1229-1233.
- Kulyasovaa, O., Islamgalieva, R., Minglerb, B. and Zehetbauerb, M. (2009), "Microstructure and fatigue properties of the ultrafine-grained AM60 magnesium alloy processed by equal-channel angular pressing", Mater. Sci. Eng. A, 503, 176-180. https://doi.org/10.1016/j.msea.2008.03.057
- Kunz, L., Lukas, P. and Svoboda, M. (2005), "Fatigue notch sensitivity of ultrafine- grained copper", Mater. Sci. Eng. A, 391, 337-341. https://doi.org/10.1016/j.msea.2004.09.052
- Lee, J.W. and Park, J.J. (2002), "Numerical and Experimental Investigations of Constrained Groove Pressing and Rolling for Grain Refinement", J. Mater. Proc. Technol., 130-131, 208-213. https://doi.org/10.1016/S0924-0136(02)00722-7
- Lee, S.H., Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. (2003), "Ultra grain refinement of commercial purity aluminum by a multi-stack ARB process", Mater. Tran., 44(7), 1376-1381. https://doi.org/10.2320/matertrans.44.1376
- Liao, F., Wang, W. and Chen, Y. (2012), "Parameter calibrations and application of micromechanical fracture models of structural steels", Struct. Eng. Mech., 42(2), 153-174. https://doi.org/10.12989/sem.2012.42.2.153
- Morattab, S., Ranjbar, K. and Reihanian, M. (2011), "On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing", Mater. Sci. Eng. A, 528, 6912-6918. https://doi.org/10.1016/j.msea.2011.05.074
- Mourad, A.H.I., Alghafri, M.J., Abu Zeid, O.A. and Maiti, S.K. (2005), "Experimental investigation on ductile stable crack growth emanating from wire-cut notch in AISI 4340 steel", Nucl. Eng. Des., 235, 637-647. https://doi.org/10.1016/j.nucengdes.2004.10.005
- Niranjan, G.G. and Chakkingal, U. (2010), "Deep drawability of commercial purity aluminum sheets processed by groove pressing", J. Mater. Proc. Technol., 210(11), 1511-1516. https://doi.org/10.1016/j.jmatprotec.2010.04.009
- Park, K.T., Kwon, H.J., Kim, W.J. and Kim, Y.S. (2001), "Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process", Mater. Sci. Eng. A, 316, 145-152. https://doi.org/10.1016/S0921-5093(01)01261-8
- Patlan, V., Vinogradov, A., Higashi, K. and Kitagawa, K. (2001), "Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing", Mater. Sci. Eng. A, 300, 171-182. https://doi.org/10.1016/S0921-5093(00)01682-8
- Peng, K., Zhang,Y., Shaw, L.L. and Qian, K.W. (2009), "Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing", Acta Mater., 57(18), 5543-5553. https://doi.org/10.1016/j.actamat.2009.07.049
- Qin, E.W., Lu, L., Tao, N.R. and Lu, K. (2009). "Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins", Scripta Mater., 60, 539-542. https://doi.org/10.1016/j.scriptamat.2008.12.012
- Rafizadeh, E., Mani, A. and Kazeminezhad, M. (2009), "The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet", Mater. Sci. Eng. A, 515, 162-168. https://doi.org/10.1016/j.msea.2009.03.081
- Rajinikanth, V., Arora, G., Narasaiaha, N. and Venkateswarlu, K. (2008), "Effect of repetitive corrugation and straightening on Al and Al-0.25Sc alloy", Mater. Lett., 62(2), 301-304. https://doi.org/10.1016/j.matlet.2007.05.014
- Shin, D.H., Park, J.J., Kim, Y.S. and Park, K.T. (2002), "Constrained groove pressing and its application to grain refinement of aluminum", Mater. Sci. Eng. A, 328, 98-103. https://doi.org/10.1016/S0921-5093(01)01665-3
- Xua, C., Wang, Q., Zheng, M., Li, J., Huanga, M., Jia, Q., Zhua, J., Kunz, L. and Buksa, M. (2008), "Fatigue behavior and damage characteristic of ultra-fine grain low-purity copper processed by equalchannel angular pressing (ECAP)", Mater. Sci. Eng. A, 475, 249-256. https://doi.org/10.1016/j.msea.2007.04.074
- Zhang, Z.F., Wu, S.D., Li, Y.J., Liu, S.M. M. Wang, Z.G. (2005), "Cyclic deformation and fatigue properties of Al-0.7 wt.% Cu alloy produced by equal channel angular pressing", Mater. Sci. Eng. A, 412, 279-286. https://doi.org/10.1016/j.msea.2005.08.221
- Zrnika, J., Kovarik, T., Novy, Z.M. and Cieslar, M. (2009), "Ultrafine-grained structure development and deformation behavior of aluminum processed by constrained groove pressing", Mater. Sci. Eng. A, 503, 126-129. https://doi.org/10.1016/j.msea.2008.03.050
피인용 문헌
- Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process vol.708, 2017, https://doi.org/10.1016/j.msea.2017.09.085
- An Experimental Study of Fracture Toughness for Nano/Ultrafine Grained Al5052/Cu Multilayered Composite Processed by Accumulative Roll Bonding vol.140, pp.10, 2018, https://doi.org/10.1115/1.4040542
- Evaluation of fracture toughness and rupture energy absorption capacity of as-rolled LZ71 and LZ91 Mg alloy sheet vol.6, pp.3, 2014, https://doi.org/10.1088/2053-1591/aaf54f
- A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg-Li alloys using RSM vol.6, pp.7, 2014, https://doi.org/10.1088/2053-1591/ab1369
- Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes vol.31, pp.11, 2020, https://doi.org/10.1088/1361-6528/ab5cd7
- Influences of the constrained groove pressing on microstructural, mechanical, and fracture properties of brass sheets vol.7, pp.11, 2020, https://doi.org/10.1088/2053-1591/abc9f2
- Experimental and numerical study on effect of constrained groove pressing on mechanical behaviour and morphology of aluminium and copper vol.67, pp.None, 2014, https://doi.org/10.1016/j.jmapro.2021.05.008