DOI QR코드

DOI QR Code

Analysis of an electrically actuated fractional model of viscoelastic microbeams

  • 투고 : 2013.09.15
  • 심사 : 2014.06.23
  • 발행 : 2014.12.10

초록

The MEMS structures usually are made from silicon; consideration of the viscoelastic effect in microbeams duo to the phenomena of silicon creep is necessary. Application of the fractional model of microbeams made from viscoelastic materials is studied in this paper. Quasi-static and dynamical responses of an electrically actuated viscoelastic microbeam are investigated. For this purpose, a nonlinear finite element formulation of viscoelastic beams in combination with the fractional derivative constitutive equations is elucidated. The four-parameter fractional derivative model is used to describe the constitutive equations. The electric force acting on the microbeam is introduced and numerical methods for solving the nonlinear algebraic equation of quasi-static response and nonlinear equation of motion of dynamical response are described. The deflected configurations of a microbeam for different purely DC voltages and the tip displacement of the microbeam under a combined DC and AC voltages are presented. The validity of the present analysis is confirmed by comparing the results with those of the corresponding cases available in the literature.

키워드

참고문헌

  1. Bagley, R.L. and Torvik, P.J. (1983), "A theoretical basis for the application of fractional calculus to viscoelasticity", J Rheol, 27(3), 201-210. https://doi.org/10.1122/1.549724
  2. Bagley, R. L. and Torvik, P. J. (1986), "On the fractional calculus model of viscoelastic behavior", J Rheol, 30, 133-135. https://doi.org/10.1122/1.549887
  3. Bahraini, S. M. S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2013), "Large deflection of viscoelastic beams using fractional derivative model", J Mech Sci Technol, 27 (4), 1063-1070. https://doi.org/10.1007/s12206-013-0302-9
  4. Bahraini, S. M. S., Eghtesad, M. and Farid, M. (2014), "Application of fractional-order control for vibration suppression of viscoelastic beams", International Journal of Computational Materials Science and Engineering, 3 (1), 1450006(1-17).
  5. Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Structural Engineering and Mechanics, An Int'l Journal, 48 (6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
  6. Bethe, K., Baumgarten, D. and Frank, J. (1990), "Creep of sensor's elastic elements: metals versus nonmetals", Sens. Actuat. A, 21, 844-849.
  7. Caputo, M. and Mainardi, F. (1971), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91, 134-147. https://doi.org/10.1007/BF00879562
  8. Caputo, M. (1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acoust. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344
  9. Elwenspoek, M. and Jansen, H. (2004), Silicon micromachining, Cambridge University Press, Cambridge.
  10. Enelund, M. and Josefson, B.M. (1997), "Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations", AIAA J., 35(10), 1630-1637. https://doi.org/10.2514/2.2
  11. Enelund, M., Mahler, L., Runesson, B. and Josefson, B.M. (1999), "Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws", Int. J. Solid. Struct., 36, 2417-2442. https://doi.org/10.1016/S0020-7683(98)00111-5
  12. Ferry, J.D. (1980), Viscoelastic Properties of Polymers, 3rd Edition, John Wiley & Sons, New York, USA.
  13. Fu, Y.M., Zhang, J. and Bi, R.G. (2009), "Analysis of the nonlinear dynamic stability for an electrically actuated viscoelastic microbeam", Microsyst. Technol., 15, 763-769. https://doi.org/10.1007/s00542-009-0791-8
  14. Fu, Y.M. and Zhang, J. (2009), "Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam", Acta Mech. Sin., 25, 211-218. https://doi.org/10.1007/s10409-008-0216-4
  15. Fu, Y.M. and Zhang, J. (2009), "Active control of the nonlinear static and dynamic responses for piezoelectric viscoelastic microplates", Smart Mater. Struct., 18, 095-037.
  16. Galucio, A.C., Deu, J.F. and Ohayon, R. (2004), "Finite element formulation of viscoelastic sandwich beams using fractional derivative operators", Comput. Mech., 33, 282-291. https://doi.org/10.1007/s00466-003-0529-x
  17. Goldberg, A.J. (1974), "Viscoelastic properties of silicone. polysulfide, and polyether", Impress. Mater., 53(5),1033-1039.
  18. Galucio, A.C., Deu, J.F. and Ohayon, R. (2005), "A fractional derivative viscoelastic model for hybrid active-passive damping treatments in time domain-application to sandwich beams", J. Intel. Mat. Syst. Struct., 16, 33-45. https://doi.org/10.1177/1045389X05046685
  19. Gaul, L. (1999), "The influence of damping on waves and vibrations", Mech. Syst. Sig. Pr., 13(1), 1-30. https://doi.org/10.1006/mssp.1997.0185
  20. Gaul, L. and Schanz, M. (1999), "A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains", Comput. Meth. Appl. M., 179, 111-123. https://doi.org/10.1016/S0045-7825(99)00032-8
  21. Koeller, R.C. (1984), "Applications of fractional calculus to the theory of viscoelasticity", J. Appl. Mech. T., ASME, 51, 299-307. https://doi.org/10.1115/1.3167616
  22. Mainardi, F. (2010), Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK.
  23. Marques, S.P.C. and Creus, G.J. (2012), Computational Viscoelasticity, Springer, Heidelberg, Germany.
  24. Oldham, K.B. and Spanier, J. (1974), The Fractional Calculus, Academic Press, New York.
  25. Padovan, J. (1987), "Computational algorithm for FE formulations involving fractional operators", Comput. Mech., 2, 271-287. https://doi.org/10.1007/BF00296422
  26. Podlubny, I. (1999), Fractional Differential Equations, Mathematics in Science and Engineering, Volume 198, Academic Press, San Diego.
  27. Pritz, T. (1996), "Analysis of four-parameter fractional derivative model of real solid materials", J. Sound Vib., 195, 103-115. https://doi.org/10.1006/jsvi.1996.0406
  28. Pritz, T. (2003), "Five-parameter fractional derivative model for polymeric damping materials", J. Sound Vib., 265, 935-952. https://doi.org/10.1016/S0022-460X(02)01530-4
  29. Reddy, J.N. (2004), An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Oxford, UK.
  30. Reddy, J.N. (2006), An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill.
  31. Rezazadeh, G., Madinei, H. and Shabani, R. (2012) "Study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method", Appl. Math. Model., 36, 430-443. https://doi.org/10.1016/j.apm.2011.07.026
  32. Rogers, L. (1983), "Operators and fractional derivatives for viscoelastic constitutive equations", J. Rheol., 27, 351-372. https://doi.org/10.1122/1.549710
  33. Schmidt, A. and Gaul, L. (2002), "Finite element formulation of viscoelastic constitutive equations using fractional time derivatives", Nonlin. Dyn., 29, 37-55. https://doi.org/10.1023/A:1016552503411
  34. The, K.S. and Lin, L.W. (1999), "Time-dependent buckling phenomena of polysilicon micro beams", Microelect. J., 30, 1169-1172. https://doi.org/10.1016/S0026-2692(99)00081-6
  35. Trindade, M.A., Benjeddou, A. and Ohayon, R. (2001), "Finite element modeling of multilayer piezoelectric sandwich beams-part I: Formulation", Int. J. Numer. Meth. Eng., 51, 835-854. https://doi.org/10.1002/nme.189.abs
  36. Tuck, K., Jungen, A., Geisberger, A., Ellis, M. and Skidmore, G.A. (2005), "Study of creep in polysilicon MEMS devices", J. Eng. Mater. T., ASME, 127, 90-96. https://doi.org/10.1115/1.1839214
  37. Zhang, J. and Fu, Y.M. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2

피인용 문헌

  1. Stress dependent relaxation time in large deformation vol.61, pp.3, 2014, https://doi.org/10.12989/sem.2017.61.3.317