References
- Bagley, R.L. and Torvik, P.J. (1983), "A theoretical basis for the application of fractional calculus to viscoelasticity", J Rheol, 27(3), 201-210. https://doi.org/10.1122/1.549724
- Bagley, R. L. and Torvik, P. J. (1986), "On the fractional calculus model of viscoelastic behavior", J Rheol, 30, 133-135. https://doi.org/10.1122/1.549887
- Bahraini, S. M. S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2013), "Large deflection of viscoelastic beams using fractional derivative model", J Mech Sci Technol, 27 (4), 1063-1070. https://doi.org/10.1007/s12206-013-0302-9
- Bahraini, S. M. S., Eghtesad, M. and Farid, M. (2014), "Application of fractional-order control for vibration suppression of viscoelastic beams", International Journal of Computational Materials Science and Engineering, 3 (1), 1450006(1-17).
- Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Structural Engineering and Mechanics, An Int'l Journal, 48 (6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
- Bethe, K., Baumgarten, D. and Frank, J. (1990), "Creep of sensor's elastic elements: metals versus nonmetals", Sens. Actuat. A, 21, 844-849.
- Caputo, M. and Mainardi, F. (1971), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91, 134-147. https://doi.org/10.1007/BF00879562
- Caputo, M. (1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acoust. Soc. Am., 56(3), 897-904. https://doi.org/10.1121/1.1903344
- Elwenspoek, M. and Jansen, H. (2004), Silicon micromachining, Cambridge University Press, Cambridge.
- Enelund, M. and Josefson, B.M. (1997), "Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations", AIAA J., 35(10), 1630-1637. https://doi.org/10.2514/2.2
- Enelund, M., Mahler, L., Runesson, B. and Josefson, B.M. (1999), "Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws", Int. J. Solid. Struct., 36, 2417-2442. https://doi.org/10.1016/S0020-7683(98)00111-5
- Ferry, J.D. (1980), Viscoelastic Properties of Polymers, 3rd Edition, John Wiley & Sons, New York, USA.
- Fu, Y.M., Zhang, J. and Bi, R.G. (2009), "Analysis of the nonlinear dynamic stability for an electrically actuated viscoelastic microbeam", Microsyst. Technol., 15, 763-769. https://doi.org/10.1007/s00542-009-0791-8
- Fu, Y.M. and Zhang, J. (2009), "Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam", Acta Mech. Sin., 25, 211-218. https://doi.org/10.1007/s10409-008-0216-4
- Fu, Y.M. and Zhang, J. (2009), "Active control of the nonlinear static and dynamic responses for piezoelectric viscoelastic microplates", Smart Mater. Struct., 18, 095-037.
- Galucio, A.C., Deu, J.F. and Ohayon, R. (2004), "Finite element formulation of viscoelastic sandwich beams using fractional derivative operators", Comput. Mech., 33, 282-291. https://doi.org/10.1007/s00466-003-0529-x
- Goldberg, A.J. (1974), "Viscoelastic properties of silicone. polysulfide, and polyether", Impress. Mater., 53(5),1033-1039.
- Galucio, A.C., Deu, J.F. and Ohayon, R. (2005), "A fractional derivative viscoelastic model for hybrid active-passive damping treatments in time domain-application to sandwich beams", J. Intel. Mat. Syst. Struct., 16, 33-45. https://doi.org/10.1177/1045389X05046685
- Gaul, L. (1999), "The influence of damping on waves and vibrations", Mech. Syst. Sig. Pr., 13(1), 1-30. https://doi.org/10.1006/mssp.1997.0185
- Gaul, L. and Schanz, M. (1999), "A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains", Comput. Meth. Appl. M., 179, 111-123. https://doi.org/10.1016/S0045-7825(99)00032-8
- Koeller, R.C. (1984), "Applications of fractional calculus to the theory of viscoelasticity", J. Appl. Mech. T., ASME, 51, 299-307. https://doi.org/10.1115/1.3167616
- Mainardi, F. (2010), Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK.
- Marques, S.P.C. and Creus, G.J. (2012), Computational Viscoelasticity, Springer, Heidelberg, Germany.
- Oldham, K.B. and Spanier, J. (1974), The Fractional Calculus, Academic Press, New York.
- Padovan, J. (1987), "Computational algorithm for FE formulations involving fractional operators", Comput. Mech., 2, 271-287. https://doi.org/10.1007/BF00296422
- Podlubny, I. (1999), Fractional Differential Equations, Mathematics in Science and Engineering, Volume 198, Academic Press, San Diego.
- Pritz, T. (1996), "Analysis of four-parameter fractional derivative model of real solid materials", J. Sound Vib., 195, 103-115. https://doi.org/10.1006/jsvi.1996.0406
- Pritz, T. (2003), "Five-parameter fractional derivative model for polymeric damping materials", J. Sound Vib., 265, 935-952. https://doi.org/10.1016/S0022-460X(02)01530-4
- Reddy, J.N. (2004), An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, Oxford, UK.
- Reddy, J.N. (2006), An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill.
- Rezazadeh, G., Madinei, H. and Shabani, R. (2012) "Study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method", Appl. Math. Model., 36, 430-443. https://doi.org/10.1016/j.apm.2011.07.026
- Rogers, L. (1983), "Operators and fractional derivatives for viscoelastic constitutive equations", J. Rheol., 27, 351-372. https://doi.org/10.1122/1.549710
- Schmidt, A. and Gaul, L. (2002), "Finite element formulation of viscoelastic constitutive equations using fractional time derivatives", Nonlin. Dyn., 29, 37-55. https://doi.org/10.1023/A:1016552503411
- The, K.S. and Lin, L.W. (1999), "Time-dependent buckling phenomena of polysilicon micro beams", Microelect. J., 30, 1169-1172. https://doi.org/10.1016/S0026-2692(99)00081-6
- Trindade, M.A., Benjeddou, A. and Ohayon, R. (2001), "Finite element modeling of multilayer piezoelectric sandwich beams-part I: Formulation", Int. J. Numer. Meth. Eng., 51, 835-854. https://doi.org/10.1002/nme.189.abs
- Tuck, K., Jungen, A., Geisberger, A., Ellis, M. and Skidmore, G.A. (2005), "Study of creep in polysilicon MEMS devices", J. Eng. Mater. T., ASME, 127, 90-96. https://doi.org/10.1115/1.1839214
- Zhang, J. and Fu, Y.M. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
Cited by
- Stress dependent relaxation time in large deformation vol.61, pp.3, 2014, https://doi.org/10.12989/sem.2017.61.3.317