DOI QR코드

DOI QR Code

Tomographic and histometric analysis of autogenous bone block and synthetic hydroxyapatite block grafts without rigid fixation on rabbit calvaria

  • Bae, Soo-Yong (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Park, Jung-Chul (Department of Periodontology, Dankook University College of Dentistry) ;
  • Shin, Hyun-Seung (Department of Periodontology, Dankook University College of Dentistry) ;
  • Lee, Yong-Keun (Research Center for Oral Disease Regulation of the Aged, Chosun University School of Dentistry) ;
  • Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry) ;
  • Jung, Ui-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry)
  • 투고 : 2014.09.03
  • 심사 : 2014.10.03
  • 발행 : 2014.10.31

초록

Purpose: The preferred material for bone augmentation beyond the envelope of skeletal bone is the bone block graft, due to its dimensional stability. We evaluated the necessity of rigid fixation for the bone block graft, and compared the bone regeneration and volume maintenance associated with grafting using a synthetic hydroxyapatite block (HAB) and an autogenous bone block (ABB) without rigid fixation on rabbit calvaria over two different periods. Methods: Cylinder-shaped synthetic HAB and ABB were positioned without fixation on the rabbit calvarium (n=16). The animals were sacrificed at 4 or 8 weeks postoperatively, and the grafted materials were analyzed at each healing period using microcomputed tomography and histologic evaluation. Results: Integration of the graft and the recipient bed was observed in all specimens, although minor dislocation of the graft materials from the original position was evident in some specimens (six ABB and ten HAB samples). A tendency toward progressive bone resorption was observed in the grafted ABB but not in the grafted HAB, which maintained an intact appearance. In the HAB group, the area of new bone increased between 4 and 8 weeks postoperatively, but the difference was not statistically significant. Conclusions: The nonfixed HAB was successfully integrated into the recipient bed after both healing periods in the rabbit calvaria. In spite of limited bone formation activity in comparison to ABB, HAB may be a favorable substitute osteoconductive bone material.

키워드

참고문헌

  1. McAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol 2007;78:377-96. https://doi.org/10.1902/jop.2007.060048
  2. Fiorellini JP, Nevins ML. Localized ridge augmentation/preservation: a systematic review. Ann Periodontol 2003;8:321-7. https://doi.org/10.1902/annals.2003.8.1.321
  3. Wang HL, Boyapati L. "PASS" principles for predictable bone regeneration. Implant Dent 2006;15:8-17. https://doi.org/10.1097/01.id.0000204762.39826.0f
  4. Barbosa DZ, de Assis WF, Shirato FB, Moura CC, Silva CJ, Dechichi P. Autogenous bone graft with or without perforation of the receptor bed: histologic study in rabbit calvaria. Int J Oral Maxillofac Implants 2009;24:463-8.
  5. Jardini MA, De Marco AC, Lima LA. Early healing pattern of autogenous bone grafts with and without e-PTFE membranes: a histomorphometric study in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:666-73. https://doi.org/10.1016/j.tripleo.2005.03.020
  6. Hoexter DL. Bone regeneration graft materials. J Oral Implantol 2002;28:290-4. https://doi.org/10.1563/1548-1336(2002)028<0290:BRGM>2.3.CO;2
  7. Nishimura I, Shimizu Y, Ooya K. Effects of cortical bone perforation on experimental guided bone regeneration. Clin Oral Implants Res 2004;15:293-300. https://doi.org/10.1111/j.1600-0501.2004.01001.x
  8. Cha JK, Kim CS, Choi SH, Cho KS, Chai JK, Jung UW. The influence of perforating the autogenous block bone and the recipient bed in dogs. Part II: histologic analysis. Clin Oral Implants Res 2012; 23:987-92. https://doi.org/10.1111/j.1600-0501.2011.02259.x
  9. Oh KC, Cha JK, Kim CS, Choi SH, Chai JK, Jung UW. The influence of perforating the autogenous block bone and the recipient bed in dogs. Part I: a radiographic analysis. Clin Oral Implants Res 2011; 22:1298-302. https://doi.org/10.1111/j.1600-0501.2010.02110.x
  10. Pinholt EM, Solheim E, Talsnes O, Larsen TB, Bang G, Kirkeby OJ. Revascularization of calvarial, mandibular, tibial, and iliac bone grafts in rats. Ann Plast Surg 1994;33:193-7. https://doi.org/10.1097/00000637-199408000-00012
  11. Lin KY, Bartlett SP, Yaremchuk MJ, Fallon M, Grossman RF, Whitaker LA. The effect of rigid fixation on the survival of onlay bone grafts: an experimental study. Plast Reconstr Surg 1990;86:449-56. https://doi.org/10.1097/00006534-199009000-00010
  12. Zins JE, Whitaker LA. Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 1983; 72:778-85. https://doi.org/10.1097/00006534-198312000-00005
  13. Phillips JH, Rahn BA. Fixation effects on membranous and endochondral onlay bone-graft resorption. Plast Reconstr Surg 1988; 82:872-7. https://doi.org/10.1097/00006534-198811000-00023
  14. Phillips JH, Rahn BA. Fixation effects on membranous and endochondral onlay bone graft revascularization and bone deposition. Plast Reconstr Surg 1990;85:891-7. https://doi.org/10.1097/00006534-199006000-00009
  15. LaTrenta GS, McCarthy JG, Breitbart AS, May M, Sissons HA. The role of rigid skeletal fixation in bone-graft augmentation of the craniofacial skeleton. Plast Reconstr Surg 1989;84:578-88. https://doi.org/10.1097/00006534-198984040-00004
  16. Burchardt H. The biology of bone graft repair. Clin Orthop RelatRes 1983;(174):28-42.
  17. De Marco AC, Jardini MA, Lima LP. Revascularization of autogenous block grafts with or without an e-PTFE membrane. Int J Oral Maxillofac Implants 2005;20:867-74.
  18. Jang YJ, Jung IH, Park JC, Jung UW, Kim CS, Lee YK, et al. Effect of seeding using an avidin-biotin binding system on the attachment of periodontal ligament fibroblasts to nanohydroxyapatite scaffolds: three-dimensional culture. J Periodontal Implant Sci 2011;41:73-8. https://doi.org/10.5051/jpis.2011.41.2.73
  19. Kim MC, Lee BH, Kim KN, Kim KM, Choi SH, Kim CK, et al. Application of X-ray micro-computed tomography on macroporous calcium phosphate glass scaffolds. Key Eng Mater 2006;309-311:1087-90. https://doi.org/10.4028/www.scientific.net/KEM.309-311.1087
  20. Gosain AK, Song L, Yu P, Mehrara BJ, Maeda CY, Gold LI, et al. Osteogenesis in cranial defects: reassessment of the concept of critical size and the expression of TGF-beta isoforms. Plast Reconstr Surg 2000;106:360-71. https://doi.org/10.1097/00006534-200008000-00018
  21. Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176-80.
  22. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci 2010;40:180-7. https://doi.org/10.5051/jpis.2010.40.4.180
  23. Mercier P, Bellavance F, Cholewa J, Djokovic S. Long-term stability of atrophic ridges reconstructed with hydroxylapatite: a prospective study. J Oral Maxillofac Surg 1996;54:960-8. https://doi.org/10.1016/S0278-2391(96)90392-4
  24. el Deeb M, Tompach PC, Morstad AT, Kwon P. Long-term follow-up of the use of nonporous hydroxyapatite for augmentation of the alveolar ridge. J Oral Maxillofac Surg 1991;49:257-61. https://doi.org/10.1016/0278-2391(91)90215-8
  25. Proussaefs P, Lozada J, Valencia G, Rohrer MD. Histologic evaluation of a hydroxyapatite onlay bone graft retrieved after 9 years: a clinical report. J Prosthet Dent 2002;87:481-4. https://doi.org/10.1067/mpr.2002.122961
  26. Gao H, Tan T, Wang D. Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 2004;96:21-8. https://doi.org/10.1016/j.jconrel.2003.12.030
  27. Jammet P, Souyris F, Baldet P, Bonnel F, Huguet M. The effect of different porosities in coral implants: an experimental study. J Craniomaxillofac Surg 1994;22:103-8. https://doi.org/10.1016/S1010-5182(05)80019-8
  28. Leeuwenburgh S, Layrolle P, Barrere F, de Bruijn J, Schoonman J, van Blitterswijk CA, et al. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J Biomed Mater Res 2001; 56:208-15. https://doi.org/10.1002/1097-4636(200108)56:2<208::AID-JBM1085>3.0.CO;2-R
  29. Donath K, Rohrer MD, Beck-Mannagetta J. A histologic evaluation of a mandibular cross section one year after augmentation with hydroxyapatite particles. Oral Surg Oral Med Oral Pathol 1987;63: 651-5. https://doi.org/10.1016/0030-4220(87)90362-8
  30. Goto T, Kojima T, Iijima T, Yokokura S, Kawano H, Yamamoto A, et al. Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone. J Orthop Sci 2001;6:444-7. https://doi.org/10.1007/s007760170013
  31. Jang JW, Yun JH, Lee KI, Jang JW, Jung UW, Kim CS, et al. Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:480-7. https://doi.org/10.1016/j.tripleo.2011.04.013
  32. Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, et al. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:298-306. https://doi.org/10.1016/j.tripleo.2010.10.025
  33. Park JC, So SS, Jung IH, Yun JH, Choi SH, Cho KS, et al. Induction of bone formation by Escherichia coli-expressed recombinant human bone morphogenetic protein-2 using block-type macroporous biphasic calcium phosphate in orthotopic and ectopic rat models. J Periodontal Res 2011;46:682-90. https://doi.org/10.1111/j.1600-0765.2011.01390.x

피인용 문헌

  1. Histological Evaluation of Maxillary Sinus Lift and Ridge Preservation with Deproteinized Porcine Bone Mineral (DPBM): Case Report vol.21, pp.1, 2014, https://doi.org/10.12972/implantology.20170003
  2. Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis vol.20, pp.17, 2014, https://doi.org/10.3390/ijms20174221
  3. Experimental and clinical evaluation of BMP2-CPC graft versus deproteinized bovine bone graft for guided bone regeneration: A pilot study vol.40, pp.1, 2014, https://doi.org/10.4012/dmj.2019-437
  4. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2 vol.22, pp.21, 2014, https://doi.org/10.3390/ijms222111485