DOI QR코드

DOI QR Code

Biological Hydrogen Production from Mixed Waste in a Polyurethane Foam-sequencing Batch Reactor

혼합폐기물 및 폴리우레탄 담체를 충전한 연속회분식공정을 이용한 생물학적 수소생산

  • Lee, Jung-Yeol (Global Top 5 Research Program, Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Wee, Daehyun (Global Top 5 Research Program, Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Global Top 5 Research Program, Department of Environmental Science and Engineering, Ewha Womans University)
  • 이정열 (Global Top 5 Research Program, 이화여자대학교 환경공학과) ;
  • 위대현 (Global Top 5 Research Program, 이화여자대학교 환경공학과) ;
  • 조경숙 (Global Top 5 Research Program, 이화여자대학교 환경공학과)
  • Received : 2014.04.01
  • Accepted : 2014.07.14
  • Published : 2014.09.28

Abstract

This study investigated the effects of polyurethane foam on continuous hydrogen production from mixed wastes. Molasses was co-fermented with non-pretreated sewage sludge in a sequencing batch reactor. The results indicated that the addition of polyurethane foams as a microbial carrier in the reactor mitigated biomass loss at HRT 12 h, while most of the biomass was washed out during the operation period with no carrier. There was a stable hydrogen production rate of $0.4L-H_2/l/d$ in the carrier-sequencing batch reactor. Suspended biomass in the carrier-reactor indicated it possessed the highest specific hydrogen production rate ($241{\pm}4ml-H_2/g\;VSS/d$) when compared to that of biomass on the surface ($133{\pm}10ml-H_2/g\;VSS/d$) or inner carrier ($95{\pm}14ml-H_2/g\;VSS/d$).

폴리우레탄 담체가 혼합폐기물을 이용한 연속식수소생산에 미치는 영향을 조사하였다. 당밀폐수와 하수슬러지를 혼합하여 연속 회분식 공정에서 발효시켰다. 담체를 넣지 않고 12 h의 수리학적 체류시간으로 운전하였을 때, 대부분의 바이오매스가 외부로 유실된 반면, 담체를 반응조에 투입하였을 때에는 미생물 유실이 현저히 저감하였다. 또한, 담체를 이용한 경우, 수소생산속도 $0.4L-H_2L^{-1}d^{-1}$로 높게 나타났다. 반응조 내 부유 바이오매스에 의한 비수소생산속도가 $241{\pm}4ml-H_2g-VSS^{-1}d^{-1}$로서 담체 표면 부착바이오매스($133{\pm}10ml-H_2g-VSS^{-1}d^{-1}$) 및 담체 내부 부착 바이오매스에 의한 값($95{\pm}14ml-H_2g-VSS^{-1}d^{-1}$)보다 높게 나타났다.

Keywords

요 약

폴리우레탄 담체가 혼합폐기물을 이용한 연속식수소생산에 미치는 영향을 조사하였다. 당밀폐수와 하수슬러지를 혼합하여 연속 회분식 공정에서 발효시켰다. 담체를 넣지 않고 12 h의 수리학적 체류시간으로 운전하였을 때, 대부분의 바이오매스가 외부로 유실된 반면, 담체를 반응조에 투입하였을 때에는 미생물 유실이 현저히 저감하였다. 또한, 담체를 이용한 경우, 수소생산속도 0.4 L-H2 L−1 d−1로 높게 나타났다. 반응조 내 부유 바이오매스에 의한 비수소생산속도가 241 ± 4 ml-H2 g-VSS−1 d−1로서 담체 표면 부착바이오매스 (133 ± 10 ml-H2 g-VSS−1 d−1) 및 담체 내부 부착 바이오매스에 의한 값(95 ± 14 ml-H2 g-VSS−1 d−1)보다 높게 나타났다.

References

  1. APHA. 1998. Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC.
  2. Chen WH, Sung S, Chen SY. 2009. Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects. Int. J. Hydrogen Energy 34: 227-234. https://doi.org/10.1016/j.ijhydene.2008.09.061
  3. Gadhe A, Sonawane SS, Varma MN. 2013. Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. Int. J. Hydrogen Energy 38: 6607-6617. https://doi.org/10.1016/j.ijhydene.2013.03.078
  4. Gue WQ, Ren NQ, Wang XJ, Xiang WS, Meng ZH, Ding J, et al. 2008. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int. J. Hydrogen Energy 33: 4981-4988. https://doi.org/10.1016/j.ijhydene.2008.05.033
  5. Gundogdu TK, Akboncuk MB, Azbar N. 2013. Biohydrogen production via a novel immobilized cell bioreactor. Biofuels 4: 595-603. https://doi.org/10.4155/bfs.13.48
  6. Intanoo P, Rangsunvigit P, Namprohm W, Thamprajamchit B, Chavadej J, Chavadej S. 2012. Hydrogen production from alcohol wastewater by an anaerobic sequencing batch reactor under thermophilic operation: nitrogen and phosphorous uptakes and transformation. Int. J. Hydrogen Energy 37: 1104-1112.
  7. Jo JH, Lee DS, Park D, Park JM. 2008. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresour. Technol. 99: 6666-6672. https://doi.org/10.1016/j.biortech.2007.11.067
  8. Jung KW, Moon C, Cho SK, Kim SH, Shin HS. 2013. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation. Bioresour Technol. 139: 120-127. https://doi.org/10.1016/j.biortech.2013.04.041
  9. Keskin T, Giusti L, Azbar N. 2012. Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int. J. Hydrogen Energy 37: 1418-1424. https://doi.org/10.1016/j.ijhydene.2011.10.013
  10. Kim MS, Lee DY. 2010. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour. Technol. 101: S48-S52. https://doi.org/10.1016/j.biortech.2009.03.040
  11. Lee M, Hidaka T, Hagiwara W, Tsuno H. 2009. Comparative performance and microbial diversity of hyperthermophilic and thermophilic co-digestion of kitchen garbage and excess sludge. Bioresour. Technol. 100: 578-585. https://doi.org/10.1016/j.biortech.2008.06.063
  12. Li J, Li B, Zhu G, Ren N, Bo L, He J. 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy 32: 3274-3283. https://doi.org/10.1016/j.ijhydene.2007.04.023
  13. Li M, Zhao YC, Guo Q, Qian XQ, Niu DJ. 2008. Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy 33: 2573-2579. https://doi.org/10.1016/j.renene.2008.02.018
  14. Park MJ, Jo JH, Park D, Lee DS, Park JM. 2010. Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from costeffective molasses. Int. J. Hydrogen Energy 35: 6194-6202. https://doi.org/10.1016/j.ijhydene.2010.03.135
  15. Piemonte V, Paola LD, Chakraborty S, Basile A. 2014. Sequencing batch reactors (SBRs) for $BioH_2$ production: Reactor operation criteria. Int. J. Hydrogen Energy In Press, http://dx.doi.org/10.1016/j.ijhydene.2014.01.075.
  16. Ren N, Li J, Li B, Wang Y, Liu S. 2006. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrogen Energy 31: 2147-2157. https://doi.org/10.1016/j.ijhydene.2006.02.011
  17. Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S. 2010. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD:N ratio, and organic acid composition. Int. J. Hydrogen Energy 35: 4092-4102.
  18. Wu SY, Hung CH, Lin CY, Lin PJ, Lee KS, Lin CN, et al. 2008. HRT-dependent hydrogen hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended, granular and immobilized sludge systems using glucose as the carbon substrate. Int. J. Hydrogen Energy 33: 1542-1549. https://doi.org/10.1016/j.ijhydene.2007.10.020