DOI QR코드

DOI QR Code

Preparation and Gas Permeation Properties of PDMS-HNT Nanotube Composite Membrane

PDMS-HNT 나노튜브 복합막의 제조와 기체투과 성질

  • Received : 2014.03.17
  • Accepted : 2014.04.24
  • Published : 2014.06.30

Abstract

PDMS (polydimethylsiloxane)-HNT (halloysite nanotube) composite membranes were prepared with different amounts tendency of HNT 5, 10, 20 and 30 wt% and rubbery polymer PDMS. The characteristics of these membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $25^{\circ}C$ and $3kg/cm^2$. Gas permeability of $N_2$, $H_2$, $CH_4$, and $CO_2$ and selectivity were investigated by increasing the amount of HNT contents in the PDMS. In $H_2$, $N_2$, $CH_4$, and $CO_2$ gases, as increasing HNT contents from 0 to 30 wt%, decreasing value of the permeability were observed. The selectivity of ($CO_2/N_2$) was shown in the range of 14 to 44 and the range of selectivity of ($CO_2/CH_4$) was 3.0 to 7.0.

고무상 고분자인 PDMS (polydimethylsiloxane)에 HNT (halloysite nanotube)의 함량을 5, 10, 20, 30 wt%로 달리하여 PDMS-HNT 복합막을 제조하고, FT-IR, XRD, TGA, SEM에 의해서 막의 특성을 조사하였다. 기체투과 실험은 $25^{\circ}C$, $3kg/cm^2$ 조건에서 수행하였고, PDMS-HNT 복합막의 HNT 함량 변화에 따른 $H_2$, $N_2$, $CH_4$, $CO_2$들의 기체투과도와 선택도를 조사하였다. $H_2$, $N_2$, $CH_4$, $CO_2$의 투과기체에 대해 HNT 함량이 0~30 wt% 범위에서 HNT 함량이 증가할수록 기체들의 투과도는 전체적으로 감소하는 경향을 보였다. 선택도($CO_2/N_2$)는 14~44의 값을 보였고, 선택도($CO_2/CH_4$)는 3.0~7.7의 값을 보였다.

Keywords

References

  1. J. W. Gilman, "Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites", Appl. Clay Sci., 15, 31 (1999). https://doi.org/10.1016/S0169-1317(99)00019-8
  2. S. S. Ray and M. Okamoto, "Polymer/layered silicate nanocomposites: a review from preparation to processing", Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  3. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, "Preparation and gas barrier properties of chitosan/clay nanocomposite film", Membrane Journal, 15, 247 (2005).
  4. A. Usuki A, N. Hasegawa, and M. Kato, "Polymer-clay nanocomposites", Adv. Polym. Sci., 179, 135 (2005). https://doi.org/10.1007/b104481
  5. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, "Preparation and mechanical properties of polypropylene-clay hybrids", Macromolecules, 30, 6333 (1997). https://doi.org/10.1021/ma961786h
  6. Q. Yuan, S. Awate, and R.D.K. Misra, "Nonisothermal crystallization behavior of polypropylene-clay nanocomposites, Eur. Polym. J., 42, 1994 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.012
  7. J. Y. Hwang, S. H. Lee, J. S. Lee, S. R. Hong, and H. K. Lee, "Mechanical and oxygen permeation properties of layered double hydroxide/ethylene vinyl acetate nanocomposite membranes", Membrane Journal, 23, 151 (2013).
  8. B. Lecouvet, J. G. Gutierrez, M. Sclavons, and C. Bailly, "Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites" Polym. Degrad Stab., 96, 226 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.11.006
  9. Y. Xie, P. R Chang, S. Wang, J. Yu, and X. Ma, "Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. starch composites", Carbohyd. Polym., 83, 186 (2011). https://doi.org/10.1016/j.carbpol.2010.07.039
  10. R. T. De Silva, Pooria Pasbakhsh, K. L. Goh, Siang-Piao Chai, and H. Ismail, "Physico-chemical characterisation of chitosan/halloysite composite membranes", Polym. Test., 32, 265 (2013). https://doi.org/10.1016/j.polymertesting.2012.11.006
  11. M. Du, B. Cuo, X. Cai, Z. Jia, M. Liu, and D. Jia, "Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites", e-Polymers, 130, 1 (2008).
  12. H. Ismail, Pooria Pasbakhsh, M. N. Ahmad Fauzi, and A. Abu Bakar, "Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites" Polym. Test., 27, 841 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.007
  13. K. Prashantha, M. F. Lacrampe, and P. Krawczak, "Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties", eXPRESS Polym. Lett., 5, 295 (2011). https://doi.org/10.3144/expresspolymlett.2011.30
  14. C. de Menezes Atayde and I. Doi, "Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments", Phys. Status Solidi C., 7, 189 (2010). https://doi.org/10.1002/pssc.200982419
  15. Y. Vijay, "The titanium-coated polymeric membranes for hydrogen recovery", Int. J. Hydrogen Energy, 27, 905 (2002).
  16. T. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  17. G. Defontaine, A. Barichard, S. Letaief, C. Feng, T. Matsuura, and C. Detellier, "Nanoporous polymer-clay hybrid membrane for gas separation" J. Colloid Interf. Sci., 343, 622 (2010). https://doi.org/10.1016/j.jcis.2009.11.048
  18. M. Nour, K. Berea, S. Balendhran, J. Z. Ou, J. D. Plessis, C. McSweeney, M. Bhaskaran, S. Sriram, and K. Kalantar-zaden, "CNT/PDMS composite membranes for $H_2$ and $CH_4$ gas separation" Int. J. Hydrogen Energy, 38, 10494 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.162
  19. H. W. Yoon, H. D. Lee, and H. B. Park, "Gas transport behavior of modified carbon nanotubes/hydrogel composite membrane", Membrane Journal, 23, 375 (2013).
  20. A. Ghebaur, S. A. Garea, and H. Iovu, "New polymer-halloysite hybrid materials-potential drug release system", Int. J. Pharmaceut., 436, 568 (2012). https://doi.org/10.1016/j.ijpharm.2012.07.014
  21. M. Du, B. Guo, and D. Jia, "Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene)", Eur. Polym. J., 42, 1362 (2006). https://doi.org/10.1016/j.eurpolymj.2005.12.006
  22. B. Guo, F. Chen, Y. Lei, X. Liu, J. Wan, and D. Jia, "Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid", Appl. Surf. Sci., 255, 7329 (2009). https://doi.org/10.1016/j.apsusc.2009.03.092
  23. A. F. Ismail, N. F. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, "Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes", Sep. Purif. Technol., 80, 20 (2011). https://doi.org/10.1016/j.seppur.2011.03.031
  24. L. Ge, Z. Zhu, and V. Rudolph, "Enhance gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomosite membrane", Sep. Purif. Technol., 78, 76 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  25. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)", J. polym. Sci.: Part B: Polym. Phys., 38, 415 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z