DOI QR코드

DOI QR Code

LSC/GDC (50 : 50 vol%) 활성층이 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 거동에 미치는 영향

The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane

  • 차다솜 (충남대학교 에너지과학기술대학원) ;
  • 유충열 (한국에너지기술연구원 창의소재연구실) ;
  • 주종훈 (한국에너지기술연구원 창의소재연구실) ;
  • 유지행 (한국에너지기술연구원 창의소재연구실) ;
  • 한문희 (충남대학교 에너지과학기술대학원) ;
  • 조철희 (충남대학교 에너지과학기술대학원)
  • Cha, Da-Som (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Yoo, Chung-Yul (Advanced Materials & Devices Laboratory, Korea Institute of Energy Research) ;
  • Joo, Jong Hoon (Advanced Materials & Devices Laboratory, Korea Institute of Energy Research) ;
  • Yu, Ji Haeng (Advanced Materials & Devices Laboratory, Korea Institute of Energy Research) ;
  • Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 투고 : 2014.09.24
  • 심사 : 2014.10.01
  • 발행 : 2014.10.31

초록

본 연구에서는 LSCF/GDC (20 : 80 vol%) 복합 분리막 표면에 LSC/GDC (50 : 50 vol%) 활성층을 코팅한 후 활성층의 열처리 온도, 두께, 침투법을 이용한 STF 도입이 산소투과 특성에 미치는 영향을 고찰하였다. 활성층 도입은 복합 분리막의 산소 투과 유속을 급격히 증진시켰으며 이는 활성층 성분인 LSC/GDC (50 : 50 vol%)가 전자 전도성 및 표면 산소 분해 반응을 증진시켰기 때문이었다. 활성층의 열처리 온도가 $900^{\circ}C$에서 $1000^{\circ}C$로 증가한 경우, 산소 투과 유속은 증가하였고 이는 분리막과 활성층 사이 그리고 활성층의 결정입간 접촉이 증진하여 산소이온과 전자 흐름을 증진시켰기 때문으로 설명되었다. 코팅층의 두께가 약 $10{\mu}m$에서 약 $20{\mu}m$로 증가한 경우, 산소 투과 유속은 오히려 감소하였는데 이는 코팅층의 두께가 증가할수록 기공을 통한 공기 중의 산소 유입이 어려워지기 때문으로 설명되었다. 또한, 코팅층에 침투법을 이용하여 STF를 도입한 경우가 STF를 도입하지 않은 경우 보다 높은 산소 투과 유속을 보였는데 이는 도입된 STF가 산소 분해하는 표면 반응 속도를 촉진시키기 때문이다. 본 연구로부터 LSC/GDC (50 : 50 vol%) 활성층 코팅 및 특성 제어는 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 증진에 매우 중요함을 확인하였다.

In the present study, disc-type LSCF/GDC (20 : 80 vol%) dual-phase membranes having porous LSC/GDC (50 : 50 vol%) active layers were prepared and effect of active layers on oxygen ion transport behavior was investigated. Introduction of active layers improved drastically oxygen flux due to enhanced electron conductivity and oxygen surface exchange activity. As firing temperature of active layer increased from $900^{\circ}C$ to $1000^{\circ}C$, oxygen flux increased due to improved contact between membrane and active layer or between grains of active layer. The enhanced contact would improve oxygen ion and electron transports from active layer to membrane. Also, as thickness of active layer increased from 10 to $20{\mu}m$, oxygen flux decreased since thick active layer rather prevented oxygen molecules diffusing through the pores. And, STF infiltration improved oxygen flux due to enhanced oxygen reduction reaction rate. The experimental data announces that coating and property control of active layer is an effective method to improve oxygen flux of dual-phase oxygen transport membrane.

키워드

참고문헌

  1. J. P. Kim, D. W. Pyo, J. H. Park, and Y. Lee, "Preparation and Oxygen permeability of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ Porous Coating Layer", Membrane Journal, 22, 8 (2012).
  2. S. J. Lee, S. I. Jeon, and J. H. Park, "Fabrication and stability of Pd coated Ta/YSZ cermet membrane for hydrogen separation", Membrane Journal, 20, 69 (2010).
  3. K. H. Lee, "Membrane separation of carbon dioxide", Membrane Journal, 4, 78 (1994).
  4. S. K. Kim, M. J. Shin, J. Rufner, K. Benthem, J. H. Yu, and S. Kim, "$Sr_{0.95}Fe_{0.5}Co_{0.5}O_{3-{\delta}}$ dual-phase membrane: Oxygen permeability, phase stability, and chemical compatibility", J. Membr. Sci., 462, 153 (2014). https://doi.org/10.1016/j.memsci.2014.03.030
  5. J. H. Joo, G. S. Park, C. Y. Yoo, and J. H. Yu, "Contribution of the surface exchange kinetics to the oxygen transport properties in $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}-La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ dual-phase membrane", Solid State Ion., 253, 64 (2013). https://doi.org/10.1016/j.ssi.2013.08.038
  6. M. J. Shin and J. H. Yu, "Oxygen transport of A-site deficient $Sr_{1-x}Fe_{0.5}Co_{0.5}O_{3-{\delta}}$ (x = 0-0.3) membranes", J. Membr. Sci., 401-402, 40 (2012). https://doi.org/10.1016/j.memsci.2012.01.023
  7. J. H. Joo, J. Jeong, S. Y. Kim, C. Y. Yoo, D. W. Jung, H. J. Park, C. Kwak, and J. H. Yu, "Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress", J. Power Sour., 247, 534 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.093
  8. F. S. Küppers, S. Baumann, W. A. Meulenberg, D. Stover, and H. Buchkremer, "Manufacturing and performance of advanced supported $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$(BSCF) oxygen transport membranes", J. Membr. Sci., 433, 121 (2013). https://doi.org/10.1016/j.memsci.2013.01.028
  9. B. C. Steele, "Ceramic ion conducting membranes", Solid State Mater. Sci., 1, 864 (1996). https://doi.org/10.1016/S1359-0286(96)80114-8
  10. M. Arnold, H. Wang, and A. Feldhoff, "Influence of $CO_2$ on the oxygen permeation performance and the microstructure of perovskite-type $(Ba_{0.5}Sr_{0.5})(Co_{0.8}Fe_{0.2})O_{3-{\delta}}$ membranes", J. Membr. Sci., 293, 44 (2007). https://doi.org/10.1016/j.memsci.2007.01.032
  11. S. McIntosh, J. F. Vente, W. G. Haije, D. H. A. Blank, and H. J. M. Bouwmeester, "Phase stability and oxygen non-stoichiometry of $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ measured by in situ neutron diffraction", Solid State Ion., 177, 833 (2006). https://doi.org/10.1016/j.ssi.2006.02.017
  12. S. Svarcivam, K. Wiik, J. Tolchard, H. J. M. Bouwmeester, and T. Grande, "Structural instability of cubic perovskite $Ba_xSr_{1-x}Co_{1-y}Fe_yO_{3-{\delta}}$", Solid State Ion., 178, 1787 (2008). https://doi.org/10.1016/j.ssi.2007.11.031
  13. M. Arnold, T. M. Gesing, J. Martynczuk, and A. Feldhoff, "Correlation of the Formation and the Decomposition Process of the BSCF Perovskite at Intermediate Temperatures", Chem. Mater., 20, 5851 (2008). https://doi.org/10.1021/cm801463h
  14. S. McIntosh, J. F. V. Vente, W. G. Haije, D. H. A. Blank, and H. J. M. Bouwmeester, "Oxygen Stoichiometry and Chemical Expansion of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Measured by in Situ Neutron Diffraction", Chem. Mater., 18, 2187 (2006). https://doi.org/10.1021/cm052763x
  15. J. H. Joo, K. S. Yun, Y. Lee, J. Joug, C. Y. Yoo, and J. H. Yu, "Dramatically Enhanced Oxygen Fluxes in Fluorite-Rich Dual-phase Membrane by Surface Modification", Chem. Mater., 264, 387 (2014).
  16. H. Kruidhof, H. J. M. Bouwmeester, R. H. E. Doorn, and A. J. Burggraaf, "Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides", Solid State Ion., 63-65, 816 (1993). https://doi.org/10.1016/0167-2738(93)90202-E
  17. F. Prado, N. Grunbaum, A. Caneir, and A. Manthirm, "Effect of $La^{3+}$ doping on the perovskite-to-bronwmillerite transformation in $Sr_{1-x}La_xCo_{0.8}Fe_{0.2}O_{3-{\delta}}$ ($0{\leq}x{\leq}0.4$)", Solid State Ion., 167, 147 (2004). https://doi.org/10.1016/j.ssi.2003.12.006
  18. L. M. Liu, T. H. Lee, L. Qui, Y. L. Yang, and A. J. Jacobson, "A Thermogravimetric Study of the Phase Diagram of Strontium Cobalrt Iron Oxide, $SrCo_{0.8}Fe_{0.2}O_{3-{\delta}}$", Mater. Res. Bull., 31, 29 (1996). https://doi.org/10.1016/0025-5408(95)00147-6
  19. J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Lin, Y. S. Lin, and J. C. D. da Costa, "Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen sparation", J. Membr. Sci., 320, 13 (2008). https://doi.org/10.1016/j.memsci.2008.03.074
  20. V. Kharton, A. V. Kovalevsky, E. V. Tsipis, A. P. Viskup. E. N. Naumovich, J. R. Jurado, and J. R. Frade, "Mixed conductivity and stability of A-site-deficient $Sr(Fe,Ti)O_{3-{\delta}}$ perovskites", J. Solid State Electrochem., 7, 30 (2002). https://doi.org/10.1007/s10008-002-0286-3
  21. Z. Jiang, C. Xia, and F. Chen, "Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique", Electrochimoca Acta., 55, 3595 (2010). https://doi.org/10.1016/j.electacta.2010.02.019
  22. V. V. Kharton, A. V. Kovalevsky, A. P. Viskup, J. R. Jurado, F. M. Figueredo, E. N. Naumovich, and J. R. Frade, "Transport Properies and Thermal Expansion of $Sr_{0.97}Ti_{1-x}Fe_xO_{3-{\delta}}$ (x = 0.2-0.8)", J. Solid State Chem., 156, 437 (2001). https://doi.org/10.1006/jssc.2000.9019
  23. K. Iwasaki, T. Ito, T. Nagasakim, Y. Arita, M. Yoshino, and T. Matsui, "Thermoeletric properties of polycrystalline $La_{1-x}Sr_xCoO_{3-{\delta}}$", J. Solid State Chem., 181, 3145 (2008). https://doi.org/10.1016/j.jssc.2008.08.017
  24. L. Navarro, F. Marques, and J. Frade, "n-Type Conductivity in Gadolinia-Doped Ceria", J. Electrochem., 144, 267 (1997). https://doi.org/10.1149/1.1837395
  25. R. A. D. Souza and J. A. Kilner, "Oxygen Transport in $La_{1-x}Sr_xMn_{1-y}Co_yO_{3{\pm}{\delta}}$ perovskites Part II Oxygen surface exchange", Solid State Ion., 126, 153 (1999). https://doi.org/10.1016/S0167-2738(99)00228-3
  26. C. Y. Yoo and H. J. M. Bnouwmeester, "Oxygen surface exchange kinetics of $SrTi_{1-x}Fe_xO{3-{\delta}}$ mixed conducting oxides", Chem. Chem. Phys., 12, 11759 (2012).