DOI QR코드

DOI QR Code

Gas Permeation Characteristics through Chitosan-HNT Composite Membrane

Chitosan-HNT 복합막을 이용한 기체 투과특성에 관한 연구

  • Received : 2014.07.31
  • Accepted : 2014.09.18
  • Published : 2014.10.31

Abstract

Chitosan-HNT (halloysite nanotube) composite membranes were prepared by the addition of HNT 0, 3, 5, and 10 wt%. The structure of composite membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $30^{\circ}C$ and $4kgf/cm^2$. Gas permeability and selectivity were investigated by increasing the amount of HNT contents in the chitosan. Chitosan-HNT composite membrane for $CO_2$ and $CH_4$ showed the maximum value at 3 wt% of HNT content and decreased thereafter. The selectivity of ($CO_2/CH_4$) was increased due to its affinity with the OH groups on the HNT, was shown in the range of 1.3 to 3.8 at 0~10 wt%.

Chitosan에 HNT (halloysite nanotube)의 함량을 0, 3, 5, 10 wt%로 가하여 chitosan-HNT 복합막을 제조하였다. 복합막의 구조는 FT-IR, XRD, TGA, SEM으로 알아보았다. 기체투과 실험은 $30^{\circ}C$, $4kg/cm^2$ 조건에서 수행하였고, chitosan-HNT 복합막의 HNT 함량 변화에 따른 $CO_2$$CH_4$의 기체투과도와 선택도를 조사하였다. Chitosan-HNT 복합막의 기체 투과도는 HNT 함량이 3 wt%에서 가장 큰 값을 보였고, 그 이상의 함량에서는 감소하였다. 선택도($CO_2/N_2$)는 0~10 wt% 범위에서 HNT 내의 OH기와 $CO_2$ 간의 친화력으로 인하여 증가하였고, 약 1.3~3.8의 값을 보였다.

Keywords

References

  1. B. O. Jung, S. J. Chung, T. S. Chung, Y. M. Lee, K. S. Choi, J. J. Kim, and S. H. Han, "Graft copolymerization of chitosan and mono(2-methacryloyl oxyethyl) acid phosphate and its antifungal effect", J. Korean Ind. & Eng. Chem., 9(6), 935 (1998).
  2. W. S. Cha, J. S. Kim, B. S. Cho, and C. K. Kim, "A study on the adsorption of heavy metals by chitosan obtained from shrimp shell", J. Korean Ind. & Eng. Chem., 9(4), 504 (1998).
  3. H. C. Koh, J. S. Park, M. A. Jeong, H. Y. Hwang, Y. T. Hong, S. Y. Ha, and S. Y. Nam, "Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes", Desalination, 233, 201 (2008). https://doi.org/10.1016/j.desal.2007.09.043
  4. S. Xiao, X. Feng, and R. Y. M. Huang, "Trimesoyl chloride crosslinked chitosan membranes for $CO_2/N_2$ separation and pervaporation dehydration of isopropanol", J. Membr. Sci., 306, 36 (2007). https://doi.org/10.1016/j.memsci.2007.08.021
  5. L. H. Li, J. C. Deng, H. R. Deng, Z. L. Liu, and L. Xin, "Synthesis and characterization of chitosan/ZnO nanoparticle composite", Carbohydr. Res., 345, 994 (2010). https://doi.org/10.1016/j.carres.2010.03.019
  6. R. T. D. Silva, P. Pasbakhsh, K. L. Goh, S. P. Chai, and H. Ismail, "Physico-chemical characterisation of chitosan/halloysite composite membranes", Polym. Test., 32, 265 (2013). https://doi.org/10.1016/j.polymertesting.2012.11.006
  7. M. Darder, M. Colilla, and E. Ruiz-Hitzky, "Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite", Chem. Mater., 15, 3774 (2003). https://doi.org/10.1021/cm0343047
  8. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, "Preparation and gas barrier properties of chitosan/clay nanocomposite film", Membrane Journal, 15(3), 247 (2005).
  9. Y. J. Yuk and K. H. Youm, "Affinity filtration chromatography of proteins by chitosan and chitin membranes: 1. Preparation and characterization of porous affinity membranes", Membrane Journal, 16(1), 39 (2006).
  10. L. A. El-Azzami and E. A. Grulke, "Dual mode model for mixed gas permeation of $CO_2$, $H_2$, and $N_2$ through a dry chitosan membrane", J. Polym. Sci. B-Polym. Phys., 45, 2620 (2007). https://doi.org/10.1002/polb.21236
  11. L. A. El-Azzami and E. A. Grulke, "Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes", J. Membr. Sci., 323, 225 (2008). https://doi.org/10.1016/j.memsci.2008.05.019
  12. A. Ito, M. Sato, and T. Anma, "Permeability of $CO_2$ through chitosan membrane swollen by water vapor in feed gas", Die Angew. Makromol. Chem., 248, 85 (1997). https://doi.org/10.1002/apmc.1997.052480105
  13. Y. Liu, S. Yu, H. Wu, Y. Li, S. Wang, Z. Tian, and Z. Jiang, "High permeability hydrogel membranes of chitosan/polyether-block-amide blends for $CO_2$ separation", J. Membr. Sci., 469, 198 (2014). https://doi.org/10.1016/j.memsci.2014.06.050
  14. S. I. Hong, J. H. Lee, H. J. Bae, S. Y. Koo, H. S. Lee, J. H. Choi, D. H. Kim, S. H. Park, and H. J. Park, "Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film", J. Applied Polymer Sci., 119, 2742 (2011). https://doi.org/10.1002/app.31767
  15. C. Tang, L. Xiang, J. Su, K. Wang, C. Yang, Q. Zhang, and Q. Fu, "Largely improved tensile properties of chitosan film via unique synergistric reinforcing effect of carbon nanotube and clay", J. Phys. Chem. B., 112, 3876 (2008). https://doi.org/10.1021/jp709977m
  16. S. F. Wang, L. Shen, W. D. Zhang, and Y. J. Tong, "Preparation and mechanical properties of chitosan/ carbon nanotubes composites", Biomacromolecules, 6, 3067 (2005). https://doi.org/10.1021/bm050378v
  17. C. Paluszkiewicz, E. Stodolak, M. Hasik, and M. Blazewicz, "FT-IR study of montmorillonite-chitosan nanocomposite materials", Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 79, 784 (2011). https://doi.org/10.1016/j.saa.2010.08.053
  18. Y. Xie, P. R Chang, S. Wang, J. Yu, and X. Ma, "Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. starch composites", Carbohydrate Polymers, 83, 186 (2011). https://doi.org/10.1016/j.carbpol.2010.07.039
  19. B. Lecouvet, J. G. Gutierrez, M. Sclavons, and C. Bailly, "Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites" Polym. Degrad Stab., 96, 226 (2011). https://doi.org/10.1016/j.polymdegradstab.2010.11.006
  20. M. Du, B. Cuo, X. Cai, Z. Jia, M. Liu, and D. Jia, "Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites", e-Polymers, 130, 1 (2008).
  21. Y. He, W. Kong, W. Wang, T. Liu, Y. Liu, Q. Gong, and J. Gao, "Modified natural halloysite/potato starch composite films", Carbohydrate Polymers, 87, 2706 (2012). https://doi.org/10.1016/j.carbpol.2011.11.057
  22. H. Ismail, P. Pasbakhsh, M. N. Ahmad Fauzi, and A. Abu Bakar, "Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites", Polym. Test., 27, 841 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.007
  23. S. A. Hashemifard, A. F. Ismail, and T. Matsuura, "Mixed matrix membrane incorporated with large pore size halloysite nanotubes(HNT) as filler for gas separation: Experimental", J. Colloid Interface Sci., 359, 359 (2011). https://doi.org/10.1016/j.jcis.2011.03.077
  24. A. F. Ismail, S. A. Hashemifard, and T. Matsuura, "Facilitated transport effect of $Ag^+$ ion exchanged halloysite nanotubes on the performance of polyetherimide mixed matrix membrane for gas separation", J. Membr. Sci., 379, 378 (2011). https://doi.org/10.1016/j.memsci.2011.06.010
  25. R. S. Murali, M. Padaki, T. Matsuura, M. S. Abdullah, and A. F. Ismail, "Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation", Sep. Purif. Technol., 132, 187 (2014). https://doi.org/10.1016/j.seppur.2014.05.020
  26. S. Yang, P. Zong, J. Hu, G. Sheng, Q. Wang, and X. Wang, "Fabrication of ${\beta}$-cyclodextrin conjugated magnetic HNT/iron oxide composite for high-efficient decontamination of U(VI)", Chem. Eng. J., 214, 376 (2013). https://doi.org/10.1016/j.cej.2012.10.030
  27. H. Sun, L. Lu, X. Chen, and Z. Jiang, "Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration ethanol", Appl. Surf. Sci., 254, 5367 (2008). https://doi.org/10.1016/j.apsusc.2008.02.056
  28. S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, "Gas permeability of polyethylene films containing zeolite powder", Polymer(Korea), 28(5), 374 (2004).
  29. T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, "Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers", J. Membr. Sci., 425, 235 (2013).
  30. H. W. Yoon, H. D. Lee, and H. B. Park, "Gas transport behavior of modified carbon nanotubes/hydrogel composite membranes", Membrane Journal, 23(5), 375 (2013).