Effect of Water and Ethanol Extracts Codonopsis lanceolata on Spatial Learning and Memory in Mice

더덕 물 추출물과 에탄올 추출물의 인지능 개선 활성 비교

  • Weon, Jin Bae (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Lee, Jiwoo (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Eom, Min Rye (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Jung, Youn Sik (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Ko, Hyun-Jeong (Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University) ;
  • Lee, Hyeon Yong (Department of Teaics, Seowon University) ;
  • Park, Dong-Sik (Functional Food & Nutrition Division, Department of Agrofood Resources) ;
  • Chung, Hee-Chul (Newtree CO., LTD.) ;
  • Chung, Jae Youn (Newtree CO., LTD.) ;
  • Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
  • 원진배 (강원대학교 생물의소재공학과) ;
  • 이지우 (강원대학교 생물의소재공학과) ;
  • 엄민례 (강원대학교 생물의소재공학과) ;
  • 정윤식 (강원대학교 생물의소재공학과) ;
  • 고현정 (강원대학교 약학대학) ;
  • 이현용 (서원대학교 차학과(식품공학과)) ;
  • 박동식 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 정희철 ((주)뉴트리) ;
  • 정재윤 ((주)뉴트리) ;
  • 마충제 (강원대학교 생물의소재공학과)
  • Received : 2014.03.04
  • Accepted : 2014.09.17
  • Published : 2014.10.31

Abstract

Alzheimer's disease (AD), most common form of dementia is characterized that memory deficit and loss of cognitive function. This study was evaluated cognitive enhancing effect of water and ethanol extracts of Codonopsis lanceolata and compared using Morris water maze and passive avoidance test. The water and 70% ethanol extracts (100, 300 and 500 mg/kg) were administered to mice. The neuroprotective effect on glutamate-induced cell death in HT22 cells was additionally investigated using MTT assay. Results showed 70% ethanol extract of Codonopsis lanceolata enhanced cognitive function than water extract, as shown by decrease in escape latency time in Morris water maze test. In passive avoidance test, 70% ethanol extract also increased the latency time compared to the water extract. Furthermore, 70% ethanol extract significantly protected neuronal cell against glutamate cytotoxicity and showed higher than neuroprotective effect of water extract. These results indicate that 70% ethanol extract more improve spatial cognitive ability and protected neuronal cells than water extract.

Keywords

References

  1. Kim, C. H. and Chung, M. H. : Pharmacognostical Studies on Codonopsis lanceolata. Kor. J. Pharmacog. 6, 43 (1975).
  2. Ushijima, M., Komoto, N., Sugizono, Y., Mizuno, I., Sumihiro, M., Ichikawa, M., Hayama, M., Kawahara, N., Nakane, T., Shirota, O., Sekita, S. and Kuroyanagi, M. : Triterpene glycosides from the roots of Codonopsis lanceolata. Chem. Pharm. Bull. 56, 308 (2008). https://doi.org/10.1248/cpb.56.308
  3. Li, J. P., Liang, Z. M. and Yuan, Z. : Triterpenoid saponins and anti-inflammatory activity of Codonopsis lanceolata. Pharmazie. 62, 463 (2007).
  4. Park, S. J., Park, D. S., Lee, S. B., He, X., Ahn, J. H., Yoon, W. B. and Lee, H. Y. : Enhancement of antioxidant activities of Codonopsis lanceolata and fermented Codonopsis lanceolata by ultra high pressure extraction. J. Kor. Soc. Food Sci. Nutr. 39, 1898 (2010). https://doi.org/10.3746/jkfn.2010.39.12.1898
  5. Kim, J. S., Choi, W. S., Chung, J. Y., Chung, H. C. and Lee, H. Y. : Enhancement of cosmeceutical activity from Codonopsis lanceolata extracts by stepwise steaming process. Kor. J. Med. Crop. Sci. 21, 204 (2013). https://doi.org/10.7783/KJMCS.2013.21.3.204
  6. Shim, S.-B. and Chun, Y.-J. : The study on skin safety and efficacy of Codonopsis lanceolata root fermentation extract. J. Kor. Acad. Industr. Coop. Soc. 13, 5623 (2012).
  7. Ryu, H.-S. : Effect of Codonopsis lanceolatae extracts on mouse IL-2, IFN-, IL-10 cytokine production by peritoneal macrophage and the ratio of IFN-, IL-10 cytokine. Kor. J. Food Nutr. 22, 69 (2009).
  8. Crapper, D. R. and DeBoni, U. : Brain aging and Alzheimer's disease. Can. Psychiatr. Assoc. J. 23, 229 (1978). https://doi.org/10.1177/070674377802300406
  9. Brookmeyer, R., Gray, S. and Kawas, C. : Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. Am. J. Public. Health 88, 1337 (1998). https://doi.org/10.2105/AJPH.88.9.1337
  10. Brion, J. P. : Neurofibrillary tangles and Alzheimer's disease. Eur. Neurol. 40, 130 (1998). https://doi.org/10.1159/000007969
  11. Goedert, M., Spillantini, M. G. and Crowther, R. A. : Tau proteins and neurofibrillary degeneration. Brain Pathol. 1, 279 (1991). https://doi.org/10.1111/j.1750-3639.1991.tb00671.x
  12. Citron, M. : Alzheimer's disease: treatments in discovery and development. Nat. Neurosci. 5, 1055 (2002). https://doi.org/10.1038/nn940
  13. Portelius, E., Zetterberg, H., Andreasson, U., Brinkmalm, G., Andereason, N., Wallin, A., Westman-Brinkmalm, A. and Blennow, K. : An Alzheimer's disease-specific beta-amyloid fragment signature in cerebrospinal fulid. Neurosci. Lett. 409, 229 (2006).
  14. Coyle, J. T. and Puttfarcken, P. : Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689 (1993). https://doi.org/10.1126/science.7901908
  15. Bartus, R. T., Dean, R. L., Beer, D. and Lipa, A. S. : The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408 (1982). https://doi.org/10.1126/science.7046051
  16. McGleenon, B. M., Dynan, K. B. and Passmore, A. P. : Acetylcholinesterase inhibitors in Alzheimer's disease. Br. J. Clin. Pharmacol. 48, 471 (1999).
  17. Ballard, C. G. : Advances in the treatment of Alzheimer's disease: benefits of dual cholinesterase inhibition. Eur. Neurol. 47, 64 (2002). https://doi.org/10.1159/000047952
  18. Dawson, G. R. and Iversen, S. D. : The effects of novel cholinesterase inhibitors and selective muscarinic receptor agonists in tests of reference and working memory, Behav. Brain Res. 57, 143 (1993). https://doi.org/10.1016/0166-4328(93)90130-I
  19. Dastmalchi, K., Damien, D. H. J., Vuorela, H. and Hiltunen, R. : Plants as potential sources of drug development against Alzheimer's disease. Int. J. Biomed. Pharmaceut. Sci. 1, 83 (2007).
  20. Park, S. J., Jung, J. M., Lee, H. E., Lee, Y. W., Kim, D. H., Kim, J. M., Hong, J. G., Lee, C. H., Jung, I. H., Cho, Y. B., Jang, D. S. and Ryu, J. H. : The memory ameliorating effects of INM-176, an ethanolic extract of Angelica gigas, against scopolamine- or A${\beta}$(1-42)-induced cognitive dysfunction in mice. J. Ethnopharmacol. 143, 611 (2012). https://doi.org/10.1016/j.jep.2012.07.019
  21. Jeong, E. J., Ma, C. J., Lee, K. Y., Kim, S. H., Sung, S. H. and Kim, Y. C. : KD-501, a standardized extract of Scrophularia buergeriana has both cognitive-enhancing and antioxidant activities in mice given scopolamine. J. Ethnopharmacol. 121, 98 (2008).
  22. Weon, J. B., Yun, B.-R., Lee, J., Eom, M. R., Lee, H. Y., Park, D. S., Chung, H. C., Chung, J. Y. and Ma, C. J. : Cognitive enhancing activity of the steamed and fermented extracts of Codonopsis lanceolata Radix. Yakhak Hoeji 57, 41 (2013).
  23. Morris, R. : Developments of water-maze procedure for studying spatial learning in rats. J. Neurosci. Methods 11, 47 (1984). https://doi.org/10.1016/0165-0270(84)90007-4
  24. Shahidi, S., Motamedi, F., Bakeshloo, S. A. and Taleghani, B. K. : The effect of reversible inactivation of the supramammillary nucleus on passive avoidance learning in rats. Behav. Brain Res. 152, 81 (2004).
  25. Izquierdo, I. : Mechanism of action of scopolamine as an amnestic. Trends Pharmacol. Sci. 10, 175 (1989). https://doi.org/10.1016/0165-6147(89)90231-9
  26. Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. : Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1 (2009). https://doi.org/10.1016/j.ejphar.2009.06.059
  27. Randall, R. D. and Thayer, S. A. : Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci. 12, 1882 (1992).
  28. Lee, H.-J., Do, J.-R., Kwon, J.-H. and Kim, H.-K. : Physiological properties of Corni fructus extracts based on their extraction condition. Kor. J. Food Preserv. 19, 271 (2012). https://doi.org/10.11002/kjfp.2012.19.2.271
  29. Yang, H. J., Weon, J. B., Lee, B. and Ma, C. J. : The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity. Pharmacogn. Mag. 7, 207 (2011). https://doi.org/10.4103/0973-1296.84234
  30. Ku, K.-H., Choi, E. J. and Park, W. S. : Functional activity of water and ethanol extracts from red pepper (Capsicum annuum L.) seeds. J. Kor. Soc. Food Sci. Nutr. 37, 1357 (2008). https://doi.org/10.3746/jkfn.2008.37.10.1357
  31. Kim, N. Y., Kim, H. J., Lee, J. H., Lee, E. K., Kang, O. H., Kwon, D. Y., So, H.-S., Lee, K. N. and Chong, M. S. : Comparison of the anti-inflammatory effects of water fermented and ethanol fermented extracts from Rhei Radix et Rhizoma. Kor. J. Ori. Med. Physiol. Pathol. 25, 227 (2011).
  32. Kim, N. Y., Chung, J. Y. and Lee, H. Y. : Enhancement of Immune Activity of the Extracts from Codonopsis lanceolata by Stepwise Steaming Process and High Pressure Process. Kor. J. Med. Crop. Sci. 22, 134 (2014). https://doi.org/10.7783/KJMCS.2014.22.2.134