A Review of Mobile Display Image Quality

  • Kim, Youn Jin (Digital Media & Communications R&D Center, Samsung Electronics Co. Ltd.)
  • Published : 2014.10.31

Abstract

The current research intends to quantify the surround luminance effects on the shape of spatial luminance CSF and to propose an image quality evaluation method that is adaptive to both surround luminance and spatial frequency of a given stimulus. The proposed image quality method extends to a model called SQRI[8]. The non-linear behaviour of the HVS was taken into account by using CSF. This model can be defined as the square root integration of multiplication between display MTF and CSF. It is assumed that image quality can be determined by considering the MTF of the imaging system and the CSF of human observers. The CSF term in the original SQRI model was replaced by the surround adaptive CSF quantified in this study and it is divided by the Fourier transform of a given stimulus. A few limitations of the current work should be addressed and revised in the future study. First, more accurate model predictions can be achievable when the actual display MTF is measured and used instead of the approximation. Then, a further improvement to the model prediction accuracy can be made when chromatic adaptation of the HVS is taken into account[45-46].

Keywords

References

  1. N. Katoh, K. Nakabayashi, M. Ito, and S. Ohno, J. Electron. Imag., 7, 794 (1998). https://doi.org/10.1117/1.482665
  2. N. Mornoney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, Proc. IS&T/SID Col. Imag. Conf. (2002).
  3. Z. Li, A. K. Bhomik, and P. J. Bos (Wiley, 2008).
  4. C. Liu & M. D. Fairchild, Proc.IS&T/SID Col. Img. Conf. (2004).
  5. C. Liu & M. D. Fairchild, Proc.IS&T/SID Col. Img. Conf. (2007).
  6. S. Y. Choi, M. R. Luo and M. R. Pointer, IS&T/SID Proc. Col. Img. Conf. (2007).
  7. Y. Park, C. Li, M. R. Luo, Y. Kwak, D. Park, C. Kim, IS&T/SID Proc. Col. Img. Conf. (2007).
  8. P. G. Barten, J. Opt. Soc. Am, 7, 2024 (1990). https://doi.org/10.1364/JOSAA.7.002024
  9. D. M. Dacey and B. B. Lee, Nature , 367, 731 (1994). https://doi.org/10.1038/367731a0
  10. F. L. van Nes and M. A. Bouman, J. Opt. Soc. Am., 57, 401 (1967). https://doi.org/10.1364/JOSA.57.000401
  11. C. Enroth-Cugell and J. G. Robson, J. Physiol ., 187, 517 (1966). https://doi.org/10.1113/jphysiol.1966.sp008107
  12. F. W. Campbell and J. G. Robson, J. Physiol., 197, 551 (1968). https://doi.org/10.1113/jphysiol.1968.sp008574
  13. O. Braddick, F. W. Campbell, J. Atkinson (Springer-Verlag, 1978).
  14. N. Graham (Erlbaum, 1980).
  15. O. H. Schade, J. Opt. Soc. Am., 46, 721 (1956). https://doi.org/10.1364/JOSA.46.000721
  16. S. Westland, H. Owens, V. Cheung, and I. Paterson-Stephens, Col. Res. Appl., 31, 315 (2006). https://doi.org/10.1002/col.20230
  17. B. A. Wandell (Sinauer Associates, 1995).
  18. E. Martinez-Uriegas (CIE, 2006).
  19. F. W. Campbell and J. G. Robson, J. Physiol., 197, 551 (1968). https://doi.org/10.1113/jphysiol.1968.sp008574
  20. A. B. Watson, Opt. Exp ., 6, 12 (2000). https://doi.org/10.1364/OE.6.000012
  21. E. Martinez-Uriegas, J. O. Larimer, J. Lubin, and J. Gille (CIE, 1995).
  22. P. G. J. Barten (SPIE, 1999).
  23. A. M. Rohaly and G. Buchsbaum, J. Opt. Soc. Am. A, 6, 312 (1989). https://doi.org/10.1364/JOSAA.6.000312
  24. A. S. Patel, J. Opt. Soc. Am. 56, 689 (1966). https://doi.org/10.1364/JOSA.56.000689
  25. R. L. de Valois, H. Morgan, and D. M. Snodderly, Vision Res., 14, 75 (1974). https://doi.org/10.1016/0042-6989(74)90118-7
  26. C. Owsley, H. Sekuler, and D. Siemsen, Vision Res ., 23, 689 (1983). https://doi.org/10.1016/0042-6989(83)90210-9
  27. U. Tulunay-Keesey, J. N. ver Hoever, and C. Terkla-McGrane, J. Opt. Soc. Am. A, 5, 2191 (1988). https://doi.org/10.1364/JOSAA.5.002191
  28. K. E. Higgins, M. J. Jaffe, R. C. Caruso, and F. deMonasterio, J. Opt. Soc. Am. A, 5, 2137 (1988).
  29. A. M. Rohaly and C. Owsley, J. Opt. Soc. Am. A, 10, 1591 (1993). https://doi.org/10.1364/JOSAA.10.001591
  30. S. Pardhan, J. Opt. Soc. Am. A, 21, 169 (2004). https://doi.org/10.1364/JOSAA.21.000169
  31. J. Rovamo, V. Virsu, and R. Nasanen, Nature, 271, 54 (1978). https://doi.org/10.1038/271054a0
  32. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendale, J. Opt. Soc. Am., 68, 845 (1979).
  33. M. J. Wright and A. Johnston, Vision Res., 23, 93 (1983).
  34. A. Johnston, J. Opt. Soc. Am. A, 4, 1583 (1987). https://doi.org/10.1364/JOSAA.4.001583
  35. D. M. Snodderly, R. S. Weinhaus, and J. C. Choi, J. Neurosci., 12, 1169 (1992).
  36. M. D. Fairchild and G. M. Johnson, J. Soc. Inf. Disp., 15, 639 (2007). https://doi.org/10.1889/1.2785197
  37. K. B. Burton, C. Owsley, and M. E. Sloane, Vision Res ., 33, 939 (1993). https://doi.org/10.1016/0042-6989(93)90077-A
  38. M. J. Cox, J. H. Norma, and P. Norman, Opthal. Physiol. Opt., 19, 401 (1999). https://doi.org/10.1046/j.1475-1313.1999.00457.x
  39. Y. J. Kim and H. S. Kim, J. Opt. Soc. Kor., 14, 152 (2010). https://doi.org/10.3807/JOSK.2010.14.2.152
  40. Y. J. Kim, Opt. Rev., 17, 459 (2010). https://doi.org/10.1007/s10043-010-0084-6
  41. P. G. J. Barten (SID Digest, 1991).
  42. Q. Sun and M. D. Farichild, J. Imag. Sci. Technol., 48, 211 (2004).
  43. Y. J. Kim, M. R. Luo, P. Rhodes, S. Westland, W. Choe, S. Lee, Y. Kwak, D. Park, and C. Kim, J. Soc. Inf. Disp., 15, 691 (2007) https://doi.org/10.1889/1.2785202
  44. Y. J. Kim, M. R. Luo, W. Choe, H. S. Kim, S. O. Park, Y. Baek, P. Rhodes, S. Lee, and C. Kim, J. Opt. Soc. Am. A, 25, 2215 (2008). https://doi.org/10.1364/JOSAA.25.002215
  45. R. Gong, H. Xu, B. Wang, and M. R. Luo, Opt. Eng., 51, 084001 (2013).
  46. K. Choi and H. Suk, Opt. Eng., 53, 061708 (2014). https://doi.org/10.1117/1.OE.53.6.061708