DOI QR코드

DOI QR Code

Trastuzumab-Conjugated Liposome-Coated Fluorescent Magnetic Nanoparticles to Target Breast Cancer

  • Jang, Mijung (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Yoon, Young Il (Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University) ;
  • Kwon, Yong Soo (NanoBio Materials Chemistry Lab., Department of Applied Bioscience, CHA University) ;
  • Yoon, Tae-Jong (Nanoimaging and Therapy Research Center, Institute of Nanoconvergence, Advanced Institutes of Convergence Technology, Seoul National University) ;
  • Lee, Hak Jong (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Hwang, Sung Il (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Yun, Bo La (Department of Radiology, Seoul National University Bundang Hospital) ;
  • Kim, Sun Mi (Department of Radiology, Seoul National University Bundang Hospital)
  • 투고 : 2013.08.21
  • 심사 : 2014.05.03
  • 발행 : 2014.07.01

초록

Objective: To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNP@m-$SiO_2$]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNP@m-$SiO_2$]-$Her2_{Ab}$) nanoparticles to be utilized in vitro for the targeting of breast cancer. Materials and Methods: The physiochemical characteristics of Lipo[MNP@m-$SiO_2$] were assessed in terms of size, morphological features, and in vitro safety. The multimodal imaging properties of the organic dye incorporated into Lipo[MNP@m-$SiO_2$] were assessed with both in vitro fluorescence and MR imaging. The specific targeting ability of trastuzumab (Her2/neu antibody, $Herceptin^{(R)}$)-conjugated Lipo[MNP@m-$SiO_2$] for Her2/neu-positive breast cancer cells was also evaluated with fluorescence and MR imaging. Results: We obtained uniformly-sized and evenly distributed Lipo[MNP@m-$SiO_2$] that demonstrated biological stability, while not disrupting cell viability. Her2/neu-positive breast cancer cell targeting by trastuzumab-conjugated Lipo[MNP@m-$SiO_2$] was observed by in vitro fluorescence and MR imaging. Conclusion: Trastuzumab-conjugated Lipo[MNP@m-$SiO_2$] is a potential treatment tool for targeted drug delivery in Her2/neu-positive breast cancer.

키워드

과제정보

연구 과제 주관 기관 : Seoul National University Bundang Hospital

참고문헌

  1. Atri M. New technologies and directed agents for applications of cancer imaging. J Clin Oncol 2006;24:3299-3308 https://doi.org/10.1200/JCO.2006.06.6159
  2. Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843-850 https://doi.org/10.1016/j.mri.2004.01.050
  3. Rogers WJ, Basu P. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 2005;178:67-73 https://doi.org/10.1016/j.atherosclerosis.2004.08.017
  4. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-4021 https://doi.org/10.1016/j.biomaterials.2004.10.012
  5. Schellenberger E, Schnorr J, Reutelingsperger C, Ungethum L, Meyer W, Taupitz M, et al. Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small 2008;4:225-230 https://doi.org/10.1002/smll.200700847
  6. Li Z, Tan B, Allix M, Cooper AI, Rosseinsky MJ. Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 2008;4:231-239 https://doi.org/10.1002/smll.200700575
  7. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 2008;47:8438-8441 https://doi.org/10.1002/anie.200802469
  8. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008;60:1278-1288 https://doi.org/10.1016/j.addr.2008.03.012
  9. Cao H, Gan J, Wang S, Xuan S, Wu Q, Li C, et al. Novel silicacoated iron-carbon composite particles and their targeting effect as a drug carrier. J Biomed Mater Res A 2008;86:671-677
  10. Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 2011;133:2955-2961 https://doi.org/10.1021/ja1084095
  11. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew Chem Int Ed Engl 2005;44:1068-1071 https://doi.org/10.1002/anie.200461910
  12. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252-1265 https://doi.org/10.1016/j.addr.2008.03.018
  13. Olayioye MA. Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res 2001;3:385-389 https://doi.org/10.1186/bcr327
  14. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707-712 https://doi.org/10.1126/science.2470152
  15. Chen TJ, Cheng TH, Chen CY, Hsu SC, Cheng TL, Liu GC, et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem 2009;14:253-260 https://doi.org/10.1007/s00775-008-0445-9
  16. Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 2004;14:1124-1129 https://doi.org/10.1007/s00330-004-2257-9
  17. Tran TA, Ekblad T, Orlova A, Sandstrom M, Feldwisch J, Wennborg A, et al. Effects of lysine-containing mercaptoacetyl-based chelators on the biodistribution of 99mTc-labeled anti-HER2 Affibody molecules. Bioconjug Chem 2008;19:2568-2576 https://doi.org/10.1021/bc800244b
  18. Lee H, Yoon TJ, Figueiredo JL, Swirski FK, Weissleder R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc Natl Acad Sci U S A 2009;106:12459-12464 https://doi.org/10.1073/pnas.0902365106
  19. Stanisic DI, Martin LB, Liu XQ, Jackson D, Cooper J, Good MF. Analysis of immunological nonresponsiveness to the 19-kilodalton fragment of merozoite surface Protein 1 of Plasmodium yoelii: rescue by chemical conjugation to diphtheria toxoid (DT) and enhancement of immunogenicity by prior DT vaccination. Infect Immun 2003;71:5700-5713 https://doi.org/10.1128/IAI.71.10.5700-5713.2003
  20. Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 2006;7:321-326 https://doi.org/10.4142/jvs.2006.7.4.321
  21. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008;29:4012-4021 https://doi.org/10.1016/j.biomaterials.2008.07.004
  22. Cheng HL, Stikov N, Ghugre NR, Wright GA. Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging 2012;36:805-824 https://doi.org/10.1002/jmri.23718
  23. Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 2011;44:893-902 https://doi.org/10.1021/ar2000259
  24. Casciaro S, Conversano F, Ragusa A, Malvindi MA, Franchini R, Greco A, et al. Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. Invest Radiol 2010;45:715-724 https://doi.org/10.1097/RLI.0b013e3181e6f42f
  25. Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009;5:846-853 https://doi.org/10.1002/smll.200800461
  26. Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 2013;34:2565-2575 https://doi.org/10.1016/j.biomaterials.2012.12.043
  27. Sung CK, Hong KA, Lin S, Lee Y, Cha J, Lee JK, et al. Dualmodal nanoprobes for imaging of mesenchymal stem cell transplant by MRI and fluorescence imaging. Korean J Radiol 2009;10:613-622 https://doi.org/10.3348/kjr.2009.10.6.613
  28. Bumb A, Regino CA, Egen JG, Bernardo M, Dobson PJ, Germain RN, et al. Trafficking of a dual-modality magnetic resonance and fluorescence imaging superparamagnetic iron oxide-based nanoprobe to lymph nodes. Mol Imaging Biol 2011;13:1163-1172 https://doi.org/10.1007/s11307-010-0424-8
  29. Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 2007;7:149-154 https://doi.org/10.1021/nl0624263
  30. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 2005;5:1003-1008 https://doi.org/10.1021/nl0502569
  31. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-284 https://doi.org/10.1016/S0168-3659(99)00248-5
  32. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, et al. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 1998;89:307-314 https://doi.org/10.1111/j.1349-7006.1998.tb00563.x
  33. Merlin JL, Barberi-Heyob M, Bachmann N. In vitro comparative evaluation of trastuzumab (Herceptin) combined with paclitaxel (Taxol) or docetaxel (Taxotere) in HER2- expressing human breast cancer cell lines. Ann Oncol 2002;13:1743-1748 https://doi.org/10.1093/annonc/mdf263
  34. Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R, Slamon DJ. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004;96:739-749 https://doi.org/10.1093/jnci/djh131

피인용 문헌

  1. Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery vol.7, pp.20, 2014, https://doi.org/10.1039/c5ay01978h
  2. Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/269641
  3. Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes vol.11, pp.suppl1, 2014, https://doi.org/10.4103/0973-1296.157710
  4. Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand vol.35, pp.4, 2015, https://doi.org/10.1002/med.21345
  5. Cell‐specific biomarkers and targeted biopharmaceuticals for breast cancer treatment vol.49, pp.4, 2016, https://doi.org/10.1111/cpr.12266
  6. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles vol.19, pp.4, 2017, https://doi.org/10.1007/s11051-017-3833-7
  7. New developments in breast cancer therapy: role of iron oxide nanoparticles vol.8, pp.2, 2014, https://doi.org/10.1088/2043-6254/aa5e33
  8. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer vol.7, pp.None, 2017, https://doi.org/10.1038/srep42069
  9. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications vol.47, pp.10, 2018, https://doi.org/10.1039/c7cs00877e
  10. How can nanotechnology help the fight against breast cancer? vol.10, pp.25, 2018, https://doi.org/10.1039/c8nr02796j
  11. Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells vol.28, pp.4, 2014, https://doi.org/10.1080/08982104.2017.1370471
  12. Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio)sensors as case studies vol.25, pp.31, 2014, https://doi.org/10.1007/s11356-018-3095-7
  13. Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells vol.11, pp.19, 2014, https://doi.org/10.1021/acsami.9b00606
  14. Trastuzumab targeted micellar delivery of docetaxel using dendron-polymer conjugates vol.8, pp.9, 2014, https://doi.org/10.1039/c9bm01764j
  15. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine vol.10, pp.9, 2014, https://doi.org/10.3390/nano10091674
  16. Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer vol.11, pp.9, 2014, https://doi.org/10.4155/tde-2020-0070
  17. In vivo MRI detection of intraplaque macrophages with biocompatible silica-coated iron oxide nanoparticles in murine atherosclerosis vol.19, pp.None, 2014, https://doi.org/10.1177/22808000211014751
  18. Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer vol.13, pp.3, 2021, https://doi.org/10.3390/pharmaceutics13030355
  19. Dual‐peptide functionalized nanoparticles for therapeutic use vol.113, pp.2, 2014, https://doi.org/10.1002/pep2.24205
  20. Effects of different ultrastructures of lecithin on cryosurvival of goat spermatozoa vol.53, pp.10, 2014, https://doi.org/10.1111/and.14183
  21. Multifunctional Magnetic Nanomedicine Drug Delivery and Imaging‐Based Diagnostic Systems vol.38, pp.12, 2014, https://doi.org/10.1002/ppsc.202100179
  22. Recent development for biomedical applications of magnetic nanoparticles vol.134, pp.None, 2014, https://doi.org/10.1016/j.inoche.2021.108995