Acknowledgement
Supported by : Seoul National University Bundang Hospital
References
- Atri M. New technologies and directed agents for applications of cancer imaging. J Clin Oncol 2006;24:3299-3308 https://doi.org/10.1200/JCO.2006.06.6159
- Funovics MA, Kapeller B, Hoeller C, Su HS, Kunstfeld R, Puig S, et al. MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 2004;22:843-850 https://doi.org/10.1016/j.mri.2004.01.050
- Rogers WJ, Basu P. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 2005;178:67-73 https://doi.org/10.1016/j.atherosclerosis.2004.08.017
- Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26:3995-4021 https://doi.org/10.1016/j.biomaterials.2004.10.012
- Schellenberger E, Schnorr J, Reutelingsperger C, Ungethum L, Meyer W, Taupitz M, et al. Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small 2008;4:225-230 https://doi.org/10.1002/smll.200700847
- Li Z, Tan B, Allix M, Cooper AI, Rosseinsky MJ. Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 2008;4:231-239 https://doi.org/10.1002/smll.200700575
- Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 2008;47:8438-8441 https://doi.org/10.1002/anie.200802469
- Slowing II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 2008;60:1278-1288 https://doi.org/10.1016/j.addr.2008.03.012
- Cao H, Gan J, Wang S, Xuan S, Wu Q, Li C, et al. Novel silicacoated iron-carbon composite particles and their targeting effect as a drug carrier. J Biomed Mater Res A 2008;86:671-677
- Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, et al. Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 2011;133:2955-2961 https://doi.org/10.1021/ja1084095
- Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK. Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. Angew Chem Int Ed Engl 2005;44:1068-1071 https://doi.org/10.1002/anie.200461910
- Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252-1265 https://doi.org/10.1016/j.addr.2008.03.018
- Olayioye MA. Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res 2001;3:385-389 https://doi.org/10.1186/bcr327
- Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244:707-712 https://doi.org/10.1126/science.2470152
- Chen TJ, Cheng TH, Chen CY, Hsu SC, Cheng TL, Liu GC, et al. Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem 2009;14:253-260 https://doi.org/10.1007/s00775-008-0445-9
- Hilger I, Leistner Y, Berndt A, Fritsche C, Haas KM, Kosmehl H, et al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur Radiol 2004;14:1124-1129 https://doi.org/10.1007/s00330-004-2257-9
- Tran TA, Ekblad T, Orlova A, Sandstrom M, Feldwisch J, Wennborg A, et al. Effects of lysine-containing mercaptoacetyl-based chelators on the biodistribution of 99mTc-labeled anti-HER2 Affibody molecules. Bioconjug Chem 2008;19:2568-2576 https://doi.org/10.1021/bc800244b
- Lee H, Yoon TJ, Figueiredo JL, Swirski FK, Weissleder R. Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc Natl Acad Sci U S A 2009;106:12459-12464 https://doi.org/10.1073/pnas.0902365106
- Stanisic DI, Martin LB, Liu XQ, Jackson D, Cooper J, Good MF. Analysis of immunological nonresponsiveness to the 19-kilodalton fragment of merozoite surface Protein 1 of Plasmodium yoelii: rescue by chemical conjugation to diphtheria toxoid (DT) and enhancement of immunogenicity by prior DT vaccination. Infect Immun 2003;71:5700-5713 https://doi.org/10.1128/IAI.71.10.5700-5713.2003
- Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 2006;7:321-326 https://doi.org/10.4142/jvs.2006.7.4.321
- Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008;29:4012-4021 https://doi.org/10.1016/j.biomaterials.2008.07.004
- Cheng HL, Stikov N, Ghugre NR, Wright GA. Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging 2012;36:805-824 https://doi.org/10.1002/jmri.23718
- Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 2011;44:893-902 https://doi.org/10.1021/ar2000259
- Casciaro S, Conversano F, Ragusa A, Malvindi MA, Franchini R, Greco A, et al. Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. Invest Radiol 2010;45:715-724 https://doi.org/10.1097/RLI.0b013e3181e6f42f
- Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, et al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009;5:846-853 https://doi.org/10.1002/smll.200800461
- Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 2013;34:2565-2575 https://doi.org/10.1016/j.biomaterials.2012.12.043
- Sung CK, Hong KA, Lin S, Lee Y, Cha J, Lee JK, et al. Dualmodal nanoprobes for imaging of mesenchymal stem cell transplant by MRI and fluorescence imaging. Korean J Radiol 2009;10:613-622 https://doi.org/10.3348/kjr.2009.10.6.613
- Bumb A, Regino CA, Egen JG, Bernardo M, Dobson PJ, Germain RN, et al. Trafficking of a dual-modality magnetic resonance and fluorescence imaging superparamagnetic iron oxide-based nanoprobe to lymph nodes. Mol Imaging Biol 2011;13:1163-1172 https://doi.org/10.1007/s11307-010-0424-8
- Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 2007;7:149-154 https://doi.org/10.1021/nl0624263
- Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 2005;5:1003-1008 https://doi.org/10.1021/nl0502569
- Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-284 https://doi.org/10.1016/S0168-3659(99)00248-5
- Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, et al. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 1998;89:307-314 https://doi.org/10.1111/j.1349-7006.1998.tb00563.x
- Merlin JL, Barberi-Heyob M, Bachmann N. In vitro comparative evaluation of trastuzumab (Herceptin) combined with paclitaxel (Taxol) or docetaxel (Taxotere) in HER2- expressing human breast cancer cell lines. Ann Oncol 2002;13:1743-1748 https://doi.org/10.1093/annonc/mdf263
- Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R, Slamon DJ. Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004;96:739-749 https://doi.org/10.1093/jnci/djh131
Cited by
- Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery vol.7, pp.20, 2014, https://doi.org/10.1039/c5ay01978h
- Anatomical, Physiological, and Molecular Imaging for Pancreatic Cancer: Current Clinical Use and Future Implications vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/269641
- Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes vol.11, pp.suppl1, 2014, https://doi.org/10.4103/0973-1296.157710
- Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand vol.35, pp.4, 2015, https://doi.org/10.1002/med.21345
- Cell‐specific biomarkers and targeted biopharmaceuticals for breast cancer treatment vol.49, pp.4, 2016, https://doi.org/10.1111/cpr.12266
- Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles vol.19, pp.4, 2017, https://doi.org/10.1007/s11051-017-3833-7
- New developments in breast cancer therapy: role of iron oxide nanoparticles vol.8, pp.2, 2014, https://doi.org/10.1088/2043-6254/aa5e33
- Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer vol.7, pp.None, 2017, https://doi.org/10.1038/srep42069
- Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications vol.47, pp.10, 2018, https://doi.org/10.1039/c7cs00877e
- How can nanotechnology help the fight against breast cancer? vol.10, pp.25, 2018, https://doi.org/10.1039/c8nr02796j
- Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells vol.28, pp.4, 2014, https://doi.org/10.1080/08982104.2017.1370471
- Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio)sensors as case studies vol.25, pp.31, 2014, https://doi.org/10.1007/s11356-018-3095-7
- Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells vol.11, pp.19, 2014, https://doi.org/10.1021/acsami.9b00606
- Trastuzumab targeted micellar delivery of docetaxel using dendron-polymer conjugates vol.8, pp.9, 2014, https://doi.org/10.1039/c9bm01764j
- Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine vol.10, pp.9, 2014, https://doi.org/10.3390/nano10091674
- Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer vol.11, pp.9, 2014, https://doi.org/10.4155/tde-2020-0070
- In vivo MRI detection of intraplaque macrophages with biocompatible silica-coated iron oxide nanoparticles in murine atherosclerosis vol.19, pp.None, 2014, https://doi.org/10.1177/22808000211014751
- Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer vol.13, pp.3, 2021, https://doi.org/10.3390/pharmaceutics13030355
- Dual‐peptide functionalized nanoparticles for therapeutic use vol.113, pp.2, 2014, https://doi.org/10.1002/pep2.24205
- Effects of different ultrastructures of lecithin on cryosurvival of goat spermatozoa vol.53, pp.10, 2014, https://doi.org/10.1111/and.14183
- Multifunctional Magnetic Nanomedicine Drug Delivery and Imaging‐Based Diagnostic Systems vol.38, pp.12, 2014, https://doi.org/10.1002/ppsc.202100179
- Recent development for biomedical applications of magnetic nanoparticles vol.134, pp.None, 2014, https://doi.org/10.1016/j.inoche.2021.108995