DOI QR코드

DOI QR Code

Monopolar Radiofrequency Ablation Using a Dual-Switching System and a Separable Clustered Electrode: Evaluation of the In Vivo Efficiency

  • Yoon, Jeong Hee (Department of Radiology, Seoul National University Hospital) ;
  • Lee, Jeong Min (Department of Radiology, Seoul National University Hospital) ;
  • Hwang, Eui Jin (Department of Radiology, Seoul National University Hospital) ;
  • Hwang, In Pyung (Department of Radiology, Seoul National University Hospital) ;
  • Baek, Jeehyun (Department of Radiology, Seoul National University Hospital) ;
  • Han, Joon Koo (Department of Radiology, Seoul National University Hospital) ;
  • Choi, Byung Ihn (Department of Radiology, Seoul National University Hospital)
  • Received : 2013.06.30
  • Accepted : 2014.01.11
  • Published : 2014.04.01

Abstract

Objective: To determine the in vivo efficiency of monopolar radiofrequency ablation (RFA) using a dual-switching (DS) system and a separable clustered (SC) electrode to create coagulation in swine liver. Materials and Methods: Thirty-three ablation zones were created in nine pigs using a DS system and an SC electrode in the switching monopolar mode. The pigs were divided into two groups for two experiments: 1) preliminary experiments (n = 3) to identify the optimal inter-electrode distances (IEDs) for dual-switching monopolar (DSM)-RFA, and 2) main experiments (n = 6) to compare the in vivo efficiency of DSM-RFA with that of a single-switching monopolar (SSM)-RFA. RF energy was alternatively applied to one of the three electrodes (SSM-RFA) or concurrently applied to a pair of electrodes (DSM-RFA) for 12 minutes in in vivo porcine livers. The delivered RFA energy and the shapes and dimensions of the coagulation areas were compared between the two groups. Results: No pig died during RFA. The ideal IEDs for creating round or oval coagulation area using the DSM-RFA were 2.0 and 2.5 cm. DSM-RFA allowed more efficient RF energy delivery than SSM-RFA at the given time ($23.0{\pm}4.0kcal$ vs. $16.92{\pm}2.0kcal$, respectively; p = 0.0005). DSM-RFA created a significantly larger coagulation volume than SSM-RFA ($40.4{\pm}16.4cm^3$ vs. $20.8{\pm}10.7cm^3$; p < 0.001). Both groups showed similar circularity of the ablation zones (p = 0.29). Conclusion: Dual-switching monopolar-radiofrequency ablation using an SC electrode is feasible and can create larger ablation zones than SSM-RFA as it allows more RF energy delivery at a given time.

Keywords

Acknowledgement

Supported by : STARmed Co., Ltd.

References

  1. Lencioni R, Crocetti L, Pina MC, Cioni D. Percutaneous imageguided radiofrequency ablation of liver tumors. Abdom Imaging 2009;34:547-556 https://doi.org/10.1007/s00261-008-9479-2
  2. Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology 2010;52:762-773 https://doi.org/10.1002/hep.23725
  3. Cho YK, Kim JK, Kim MY, Rhim H, Han JK. Systematic review of randomized trials for hepatocellular carcinoma treated with percutaneous ablation therapies. Hepatology 2009;49:453-459 https://doi.org/10.1002/hep.22648
  4. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012;379:1245-1255 https://doi.org/10.1016/S0140-6736(11)61347-0
  5. Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 2008;47:82-89
  6. European Association For The Study Of The Liver; European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908-943 https://doi.org/10.1016/j.jhep.2011.12.001
  7. Peng ZW, Lin XJ, Zhang YJ, Liang HH, Guo RP, Shi M, et al. Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study. Radiology 2012;262:1022-1033 https://doi.org/10.1148/radiol.11110817
  8. Kuvshinoff BW, Ota DM. Radiofrequency ablation of liver tumors: influence of technique and tumor size. Surgery 2002;132:605-611; discussion 611-612 https://doi.org/10.1067/msy.2002.127545
  9. Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Ierace T, Solbiati L, et al. Hepatocellular carcinoma: radiofrequency ablation of medium and large lesions. Radiology 2000;214:761-768 https://doi.org/10.1148/radiology.214.3.r00mr02761
  10. Waki K, Aikata H, Katamura Y, Kawaoka T, Takaki S, Hiramatsu A, et al. Percutaneous radiofrequency ablation as first-line treatment for small hepatocellular carcinoma: results and prognostic factors on long-term follow up. J Gastroenterol Hepatol 2010;25:597-604 https://doi.org/10.1111/j.1440-1746.2009.06125.x
  11. Solmi L, Nigro G, Roda E. Therapeutic effectiveness of echoguided percutaneous radiofrequency ablation therapy with a LeVeen needle electrode in hepatocellular carcinoma. World J Gastroenterol 2006;12:1098-1104 https://doi.org/10.3748/wjg.v12.i7.1098
  12. Shiina S, Teratani T, Obi S, Sato S, Tateishi R, Fujishima T, et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology 2005;129:122-130 https://doi.org/10.1053/j.gastro.2005.04.009
  13. Mazzaferro V, Battiston C, Perrone S, Pulvirenti A, Regalia E, Romito R, et al. Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: a prospective study. Ann Surg 2004;240:900-909 https://doi.org/10.1097/01.sla.0000143301.56154.95
  14. Lopez PM, Villanueva A, Llovet JM. Systematic review: evidence-based management of hepatocellular carcinoma-- an updated analysis of randomized controlled trials. Aliment Pharmacol Ther 2006;23:1535-1547 https://doi.org/10.1111/j.1365-2036.2006.02932.x
  15. Pompili M, Saviano A, de Matthaeis N, Cucchetti A, Ardito F, Federico B, et al. Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma ${\leq}$3 cm. Results of a multicenter Italian survey. J Hepatol 2013;59:89-97 https://doi.org/10.1016/j.jhep.2013.03.009
  16. Dodd GD 3rd, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol 2001;177:777-782 https://doi.org/10.2214/ajr.177.4.1770777
  17. Chen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, et al. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients--mathematic model, overlapping mode, and electrode placement process. Radiology 2004;232:260-271 https://doi.org/10.1148/radiol.2321030821
  18. Mulier S, Miao Y, Mulier P, Dupas B, Pereira P, De Baere T, et al. Electrodes and multiple electrode systems for radio frequency ablation: a proposal for updated terminology. Adv Exp Med Biol 2006;574:57-73 https://doi.org/10.1007/0-387-29512-7_8
  19. Ni Y, Mulier S, Miao Y, Michel L, Marchal G. A review of the general aspects of radiofrequency ablation. Abdom Imaging 2005;30:381-400 https://doi.org/10.1007/s00261-004-0253-9
  20. Lee J, Lee JM, Yoon JH, Lee JY, Kim SH, Lee JE, et al. Percutaneous radiofrequency ablation with multiple electrodes for medium-sized hepatocellular carcinomas. Korean J Radiol 2012;13:34-43 https://doi.org/10.3348/kjr.2012.13.1.34
  21. Laeseke PF, Sampson LA, Haemmerich D, Brace CL, Fine JP, Frey TM, et al. Multiple-electrode radiofrequency ablation creates confluent areas of necrosis: in vivo porcine liver results. Radiology 2006;241:116-124 https://doi.org/10.1148/radiol.2411051271
  22. Frericks BB, Ritz JP, Roggan A, Wolf KJ, Albrecht T. Multipolar radiofrequency ablation of hepatic tumors: initial experience. Radiology 2005;237:1056-1062 https://doi.org/10.1148/radiol.2373041104
  23. Lee JM, Han JK, Kim HC, Choi YH, Kim SH, Choi JY, et al. Switching monopolar radiofrequency ablation technique using multiple, internally cooled electrodes and a multichannel generator: ex vivo and in vivo pilot study. Invest Radiol 2007;42:163-171 https://doi.org/10.1097/01.rli.0000252495.44818.b3
  24. Woo S, Lee JM, Yoon JH, Joo I, Kim SH, Lee JY, et al. Smalland medium-sized hepatocellular carcinomas: monopolar radiofrequency ablation with a multiple-electrode switching system-mid-term results. Radiology 2013;268:589-600 https://doi.org/10.1148/radiol.13121736
  25. Lee ES, Lee JM, Kim WS, Choi SH, Joo I, Kim M, et al. Multiple-electrode radiofrequency ablations using $Octopus^{(R)}$ electrodes in an in vivo porcine liver model. Br J Radiol 2012;85:e609-e615 https://doi.org/10.1259/bjr/61619687
  26. Yoon JH, Lee JM, Han JK, Choi BI. Dual switching monopolar radiofrequency ablation using a separable clustered electrode: comparison with consecutive and switching monopolar modes in ex vivo bovine livers. Korean J Radiol 2013;14:403-411 https://doi.org/10.3348/kjr.2013.14.3.403
  27. Lee FT Jr, Haemmerich D, Wright AS, Mahvi DM, Sampson LA, Webster JG. Multiple probe radiofrequency ablation: pilot study in an animal model. J Vasc Interv Radiol 2003;14:1437-1442 https://doi.org/10.1097/01.RVI.0000096771.74047.C8
  28. Lee ES, Lee JM, Kim KW, Lee IJ, Han JK, Choi BI. Evaluation of the in vivo efficiency and safety of hepatic radiofrequency ablation using a 15-G $Octopus^{(R)}$ in pig liver. Korean J Radiol 2013;14:194-201 https://doi.org/10.3348/kjr.2013.14.2.194
  29. Lee JM, Han JK, Kim SH, Choi SH, An SK, Han CJ, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol 2005;184:391-397 https://doi.org/10.2214/ajr.184.2.01840391
  30. Laeseke PF, Sampson LA, Frey TM, Mukherjee R, Winter TC 3rd, Lee FT Jr, et al. Multiple-electrode radiofrequency ablation: comparison with a conventional cluster electrode in an in vivo porcine kidney model. J Vasc Interv Radiol 2007;18:1005-1010 https://doi.org/10.1016/j.jvir.2007.05.010
  31. Lee JD, Lee JM, Kim SW, Kim CS, Mun WS. MR imaginghistopathologic correlation of radiofrequency thermal ablation lesion in a rabbit liver model: observation during acute and chronic stages. Korean J Radiol 2001;2:151-158 https://doi.org/10.3348/kjr.2001.2.3.151
  32. Lee JM, Han JK, Lee JY, Kim SH, Choi JY, Lee MW, et al. Hepatic radiofrequency ablation using multiple probes: ex vivo and in vivo comparative studies of monopolar versus multipolar modes. Korean J Radiol 2006;7:106-117 https://doi.org/10.3348/kjr.2006.7.2.106
  33. Lee JM, Han JK, Chang JM, Chung SY, Kim SH, Lee JY, et al. Radiofrequency ablation of the porcine liver in vivo: increased coagulation with an internally cooled perfusion electrode. Acad Radiol 2006;13:343-352 https://doi.org/10.1016/j.acra.2005.10.020
  34. Lee JM, Han JK, Kim SH, Shin KS, Lee JY, Park HS, et al. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: ex vivo bovine liver. Korean J Radiol 2004;5:258-265 https://doi.org/10.3348/kjr.2004.5.4.258
  35. Appelbaum L, Sosna J, Pearson R, Perez S, Nissenbaum Y, Mertyna P, et al. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology 2010;254:430-440 https://doi.org/10.1148/radiol.09090207
  36. Laeseke PF, Sampson LA, Haemmerich D, Brace CL, Fine JP, Frey TM, et al. Multiple-electrode radiofrequency ablation: simultaneous production of separate zones of coagulation in an in vivo porcine liver model. J Vasc Interv Radiol 2005;16:1727-1735 https://doi.org/10.1097/01.RVI.000018362.17771.B0
  37. Baldwin K, Katz SC, Rubin A, Somasundar P. Bipolar radiofrequency ablation of liver tumors: technical experience and interval follow-up in 22 patients with 33 ablations. J Surg Oncol 2012;106:905-910 https://doi.org/10.1002/jso.23147
  38. Clasen S, Rempp H, Schmidt D, Schraml C, Hoffmann R, Claussen CD, et al. Multipolar radiofrequency ablation using internally cooled electrodes in ex vivo bovine liver: correlation between volume of coagulation and amount of applied energy. Eur J Radiol 2012;81:111-113 https://doi.org/10.1016/j.ejrad.2010.10.031
  39. Lee JM, Han JK, Kim HC, Kim SH, Kim KW, Joo SM, et al. Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol 2007;42:676-683 https://doi.org/10.1097/RLI.0b013e3180661aad

Cited by

  1. Ultrasound-Guided Percutaneous Radiofrequency Ablation of Liver Tumors: How We Do It Safely and Completely vol.16, pp.6, 2014, https://doi.org/10.3348/kjr.2015.16.6.1226
  2. Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes vol.88, pp.1050, 2014, https://doi.org/10.1259/bjr.20140468
  3. Current status and future of radiofrequency ablation for hepatocellular carcinoma vol.58, pp.6, 2014, https://doi.org/10.5124/jkma.2015.58.6.542
  4. Hepatocellular Carcinoma within Milan Criteria: No-Touch Multibipolar Radiofrequency Ablation for Treatment-Long-term Results vol.280, pp.2, 2016, https://doi.org/10.1148/radiol.2016150743
  5. Angled Cool-Tip Electrode for Radiofrequency Ablation of Small Superficial Subcapsular Tumors in the Liver: A Feasibility Study vol.17, pp.5, 2014, https://doi.org/10.3348/kjr.2016.17.5.742
  6. Switching Monopolar Radiofrequency Ablation Using a Separable Cluster Electrode in Patients with Hepatocellular Carcinoma: A Prospective Study vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0161980
  7. A new approach to feedback control of radiofrequency ablation systems for large coagulation zones vol.33, pp.4, 2017, https://doi.org/10.1080/02656736.2016.1263365
  8. Percutaneous Dual-Switching Monopolar Radiofrequency Ablation Using a Separable Clustered Electrode: A Preliminary Study vol.18, pp.5, 2014, https://doi.org/10.3348/kjr.2017.18.5.799
  9. Recent Advances in the Image-Guided Tumor Ablation of Liver Malignancies: Radiofrequency Ablation with Multiple Electrodes, Real-Time Multimodality Fusion Imaging, and New Energy Sources vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.545
  10. No-Touch Radiofrequency Ablation of VX2 Hepatic Tumors In Vivo in Rabbits: A Proof of Concept Study vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1099
  11. Sequential and Simultaneous 4-Antenna Microwave Ablation in an Ex Vivo Bovine Liver Model vol.42, pp.10, 2019, https://doi.org/10.1007/s00270-019-02241-6
  12. Radiofrequency Ablation Using a Separable Clustered Electrode for the Treatment of Hepatocellular Carcinomas: A Randomized Controlled Trial of a Dual-Switching Monopolar Mode Versus a Single-Switching vol.21, pp.None, 2014, https://doi.org/10.3348/kjr.2020.0134
  13. Linear radiofrequency ablation using dual switching-control mode achieves rapid and bloodless liver resection, an experimental research vol.38, pp.1, 2014, https://doi.org/10.1080/02656736.2021.1892215
  14. Recent technical advances in radiofrequency ablations for hepatocellular carcinoma vol.10, pp.4, 2014, https://doi.org/10.18528/ijgii210050