DOI QR코드

DOI QR Code

몬테칼로 계산을 통한 흡수선량 재구성의 임상적 응용: 변형된 팬텀에서의 총제적 선량재구성

Clinical Application of Dose Reconstruction Based on Full-Scope Monte Carlo Calculations: Composite Dose Reconstruction on a Deformed Phantom

  • 투고 : 2014.08.25
  • 심사 : 2014.09.06
  • 발행 : 2014.09.30

초록

본 연구의 목적은 흡수선량 재구성, 방사선 치료간의 재구성된 선량의 등록, 선량-체적 히스토그램의 생산등을 수행하는 선량 재구성의 임상적 응용시스템을 만들고 그것을 변형된 전립선 팬텀에 적용하는 것이다. 이를 위해 변형가능한 전립선 팬텀을 20 cm 깊이와 40 cm너비의 물팬텀에 집에 넣었다. 이것의 영상을 얻고, 전립선, 정낭 및 항문의 윤곽을 그렸다. 동일 평면에서 네개의 조사문을 이용하여 세기 변조계획을 세웠다.항문에 20 ml의 물풍선을 삽입하여 장기를 변형시켰다. 영상을 다시 획득하여 위 장기의 윤곽을 그렸다. XVMC몬테칼로 코드를 사용하여 두 팬텀및 EPID내에서 선량반응 인자를 계산하였다. 세기변조계획에서 얻어진 방사선을 두팬텀에 조사하여 EPID에서 적분형 영상을 얻었다. Demons 방법을 사용하여 변형된 팬텀을 변형전 팬텀에 등록시켰다. 이를 통해 단위체적별 위치변이 정보를 얻었고 이를 이용해 두 팬텀의 재 구성된 선량을 합하여 변형전 팬텀에 생산해 냈다. 순방향으로 계산된 치료계획 선량을 합산된 재구성된 선량과 비교하였다. 200 cGy에서 전립선과 정낭이 받든 체적은 차이를 거의 보이지 않았으나, 210 cGy 이상에서는 3%가량 차이를 보였다. 항문에서는 150-200 cGy영역에서 재구성된 선량에 의하여 받은 체적은 치료 계획과 비교하여 3% 이상 적었다. 본 연구를 통하여 선량 재구성의 임상적 응용시스템이 성공적으로 만들어 졌다. 변형된 전립선 팬텀에 적용되어 작지 않은 선량의 차이를 목표장기와 보호 장기에 보였다.

The purpose of this study was to develop a system of clinical application of reconstructed dose that includes dose reconstruction, reconstructed dose registration between fractions of treatment, and dose-volume-histogram generation and to demonstrate the system on a deformable prostate phantom. To achieve this purpose, a deformable prostate phantom was embedded into a 20 cm-deep and 40 cm-wide water phantom. The phantom was CT scanned and the anatomical models of prostate, seminal vesicles, and rectum were contoured. A coplanar 4-field intensity modulated radiation therapy (IMRT) plan was used for this study. Organ deformation was simulated by inserting a "transrectal" balloon containing 20 ml of water. A new CT scan was obtained and the deformed structures were contoured. Dose responses in phantoms and electronic portal imaging device (EPID) were calculated by using the XVMC Monte Carlo code. The IMRT plan was delivered to the two phantoms and integrated EPID images were respectively acquired. Dose reconstruction was performed on these images using the calculated responses. The deformed phantom was registered to the original phantom using an in-house developed software based on the Demons algorithm. The transfer matrix for each voxel was obtained and used to correlate the two sets of the reconstructed dose to generate a cumulative reconstructed dose on the original phantom. Forwardly calculated planning dose in the original phantom was compared to the cumulative reconstructed dose from EPID in the original phantom. The prescribed 200 cGy isodose lines showed little difference with respect to the "prostate" and "seminal vesicles", but appreciable difference (3%) was observed at the dose level greater than 210 cGy. In the rectum, the reconstructed dose showed lower volume coverage by a few percent than the plan dose in the dose range of 150 to 200 cGy. Through this study, the system of clinical application of reconstructed dose was successfully developed and demonstrated. The organ deformation simulated in this study resulted in small but observable dose changes in the target and critical structure.

키워드

참고문헌

  1. Mijnheer B, Beddar S, Izewska J, Reft C: In vivo dosimetry in external beam radiotherapy. Med Phy 40(7):070903 (2013) https://doi.org/10.1118/1.4811216
  2. Yeo IJ, Jung JW, Yi BY, Kim JO: Feasibility study on inverse four-dimensional dose reconstruction using the continuous doseimage of EPID. Med Phys 40(5):051702 (2013) https://doi.org/10.1118/1.4799941
  3. Yeo IJ, Jung JW, Chew M, et al: Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image. Phys Med Biol 54(17):5223-36 (2009) https://doi.org/10.1088/0031-9155/54/17/010
  4. Jung JW, Kim JO, Yeo IJ, et al: Fast transit portal dosimetry using density-scaled layer modeling of aSi-based electronic portal imaging device and Monte Carlo method. Med Phys 39(12): 7593-602 (2012) https://doi.org/10.1118/1.4764563
  5. Elmpt W van, Nijsten S, Petit S, et al: 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry. Int J Radiat Oncol Biol Phys 73(5):1580-7 (2009) https://doi.org/10.1016/j.ijrobp.2008.11.051
  6. Spezi E, Lewis DG: Full forward Monte Carlo calculation of portal dose from MLC collimated treatment beams. Phys Med Biol 47(3):377-90 (2002) https://doi.org/10.1088/0031-9155/47/3/302
  7. Partridge M, Ebert M, Hesse B-M: IMRT verification by three-dimensional dose reconstruction from portal beam measurements. Med Phy 29(8):1847 (2002) https://doi.org/10.1118/1.1494988
  8. Fippel M: Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26(8):1466-75 (1999) https://doi.org/10.1118/1.598676
  9. Thirion JP: Image matching as a diffusion process: an analogy with Maxwell's demons 2(3):243-260(2004)