DOI QR코드

DOI QR Code

A change of the public's emotion depending on Temperature & Humidity index

온습도에 따른 대중의 감성(감정+감각) 활동 변화

  • 양중기 (가천대학교 일반대학원 IT융합공학과) ;
  • 김근영 (가천대학교 컴퓨터공학과) ;
  • 이영호 (가천대학교 컴퓨터공학과) ;
  • 강운구 (가천대학교 컴퓨터공학과)
  • Received : 2014.06.29
  • Accepted : 2014.10.20
  • Published : 2014.10.28

Abstract

Many researches about the effect on politics, economics and Sociocultural phenomenon using the social media are in progress. Authors utilized NAVER Trend most famous web browsing service in korea, NAVER Blog social media, NAVER Cafe service and Open Data(API) and also used temperature, humidity index data of Korea Meteorological Administration. This study analyzed a change of the public's emotion in korea using Cluster analysis of vocabulary of taste among its of feelings and senses. K-means clustering was followed by decision of the number of groups which was used Chi-square goodness of fit test and ward analysis. Eight groups was made and it represented sensitive vocabulary. By Discriminant analysis, eight groups decided by Cluster analysis has 98.9% accuracy. The change of the public's emotion has capability to predict people's activity so they can share sensibility and a bond of sympathy developed between them.

소셜 미디어 데이터를 통해 파급되는 형태를 분석하여 국내 외 정치, 경제, 보건, 사회 문화현상을 대응하고자 하는 연구가 활발히 진행 중이다. 본 연구는 한국인이 가장 많이 사용하는 검색 서비스인 검색 정보를 알 수 있는 네이버 트렌드와 소셜 데이터인 네이버 블로그, 네이버 카페와 Open Data(API)를 사용하고 기상청의 온도, 습도 데이터를 사용하였다. 사람의 감성을 나타내는 감정 어휘와 감각을 표현하는 감각어휘 중 미각 어휘를 분석하여 대중의의 감성 활동 변화를 연구하였다. 적합도 검증과 계층적 군집분석으로 군집의 개수를 정하여 비 계층적 군집분석으로 군집화 하였다. 군집분석 결과 8개의 군집으로 군집화되어 감성어휘를 알 수 있었다. 판별분석에 의하면, 군집분석에서 결정된 8개의 그룹은 98.9% 정확성을 갖는 것으로 나타났다. 본 연구에서 연구한 감성 활동 변화는 온도와 습도에 의해 감성 활동을 예측 할 수 있어 감성을 공유하고 대중의 기분을 파악하여 서로 공감대를 형성 할 수 있다.

Keywords

References

  1. Hwang, Yun Chan, KOH, Chan. "Analysis of Opinion Social Data on the SNS (Social Network Service) by Analyzing of Collective Damage Reply." The Society of Digital Policy & Management 11.5 (2013): 41-51.
  2. Choi, Sungbin, et al. "Semantic concept-enriched dependence model for medical information retrieval." Journal of biomedical informatics 47.(2014): 18-27. https://doi.org/10.1016/j.jbi.2013.08.013
  3. Han Sowol, Lee Minsu. "A Big Data Model for Social Information Recommendation Techniques." Korea information science society: database 39.6 (2012): 380-386.
  4. Lee Seonghun and Lee Dongu. "Current Status of Big Data Utilization." The Korea Society of Digital Policy and Management 11.2 (2013): 229-233. https://doi.org/10.14400/JDPM.2013.11.2.229
  5. Jung-Gi Yang, Jae-Kwon Kim, Un-Gu Kang, Young-Ho Lee, "Coronary heart disease optimization system on adaptive-network-based fuzzy inference system and linear discriminant analysis", Pers Ubiquit Comput, 17.7 (2013): 1315-1572 https://doi.org/10.1007/s00779-012-0565-7
  6. Noh Gyuseong. "A Study on Utilization Strategy of Big Data for Local Administration by Analyzing Cases." The Korea Society of Digital Policy and Management 12.1(2014): 89-97. https://doi.org/10.14400/JDPM.2014.12.1.89
  7. "Development of weather index Korean life." National Institute of Meteorological Research, (2009)
  8. Bollen, Johan, Huina Mao, and Xiaojun Zeng. "Twitter mood predicts the stock market." Journal of Computational Science 2.1 (2011): 1-8. https://doi.org/10.1016/j.jocs.2010.12.007
  9. Song Taemin, et al. "Multivariate Analysis of Factors for Search on Suicide Using Social Big Data." Korean Society for Health Education 30.3 (2013): 59-73. https://doi.org/10.14367/kjhep.2013.30.3.059
  10. Kang Byeonguk, "Performance analysis of volleyball games using the social network and text mining techniques." Dong-Eui University. (2013)
  11. Song Myeongbin, Lee Sangho. "A Study on the Policy Implication on the Relation of Social Media & Movie industry : Focusing on Emotional Perception & Audience Trends." The Korea Society of Digital Policy and Management 12.1 (2014): 295-303. https://doi.org/10.14400/JDPM.2014.12.1.295
  12. Na Geon. "A Study on the Meaning of Sensibility and Vocabulary System for Sensibility Evaluation." Journal of Ergonomics Society of Korea 26.3 (2007): 17-25. https://doi.org/10.5143/JESK.2007.26.3.017
  13. Yoon Hyeonggeon. "Sensitivity Analysis on Korean Fonts Between Korean and Chinese." Korea Society for Emotion and Sensibility 14.4 (2011): 637-644.
  14. Lee Junung, et al. "Classification of Emotion Terms in Korean." Korea Communication Association 52.1 (2008): 85-116.
  15. Kwon Yeonghun, Chang Jaegeon. "Emotion Extraction of Multimedia Contents based on Specific Sound Frequency Bands." The Korea Society of Digital Policy and Management 11.11 (2013): 381-387. https://doi.org/10.14400/JDPM.2013.11.11.381
  16. Kim Duyeol, Lee Seongyu, Kang Eungu. "A Study on the Relationships between Emotional Intelligence of Consultant and Consulting Service Quality." The Korea Society of Digital Policy and Management 11.7 (2013): 41-50. https://doi.org/10.14400/JDPM.2013.11.7.041
  17. Lee Eunyeong. "Effect of Emotions on the Food Preference and Restaurant Selection of Female University Students." Ewha Womans University. (2008)
  18. Lee Ganghyeon, et al. "A Design of Food Recommendation Application Based on Kansei Analysis." Korea Information Science Society (2012): 528-530
  19. Jung Juseok, Kang Sinjae. "Hybrid Food Recommendation System Using Auto-generated User Profiles." Journal of Korean Institute of Intelligent Systems 21.5 (2011): 609-617. https://doi.org/10.5391/JKIIS.2011.21.5.609
  20. Eisen, Michael B., et al. "Cluster analysis and display of genome-wide expression patterns." Proceedings of the National Academy of Sciences 95.25 (1998): 14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  21. Kang Eunjeong. "Clustering of Lifestyle Behaviors of Korean Adults Using Smoking, Drinking, and Physical Activity." KIHASA 27.2 (2007): 44-66.
  22. Huang, Zhexue. "Extensions to the k-means algorithm for clustering large data sets with categorical values." Data Mining and Knowledge Discovery 2.3 (1998): 283-304. https://doi.org/10.1023/A:1009769707641
  23. Fisher, Ronald A. "The use of multiple measurements in taxonomic problems." Annals of eugenics 7.2 (1936): 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x