DOI QR코드

DOI QR Code

MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic

  • 윤제정 (한국세라믹기술원 나노IT소재팀) ;
  • 전명표 (한국세라믹기술원 나노IT소재팀) ;
  • 신효순 (한국세라믹기술원 나노IT소재팀) ;
  • 남산 (고려대학교 신소재공학과)
  • Yoon, Jea-Jung (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Chun, Myoung-Pyo (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo Soon (Nano IT Materials Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Nahm, San (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2014.10.02
  • 심사 : 2014.10.24
  • 발행 : 2014.11.01

초록

Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

키워드

참고문헌

  1. P. W. McMillan, Glass-ceramics, 2nd ed. (Academic Press, New York, 1979) p. 85.
  2. A. Buch, M. Ish-shalom, R. Reisfeld, and A. Kisilev, Mat. Sci, Eng., 71, 333 (1985). https://doi.org/10.1016/0025-5416(85)90246-0
  3. B. J. J. Zelinski, B. D. Fabes, and D. R. Uhlmann, J. Non-Cryst. Solid., 82, 307 (1986). https://doi.org/10.1016/0022-3093(86)90146-8
  4. J. F. MacDowell and G. H. Beall, Ceram. T., 15, 133 (1990).
  5. R. A. Miller, J. L. Smialek, and R. G. Garlick, Science and Technology of Zirconia (eds. A. H. Heuer and L. W. Hobbs) (Amer. Ceram. Soc., 1981) p. 241.
  6. M. A. McCoy and A. H. Heuer, J. Am. Ceram. Soc., 71, 673 (1998).
  7. B. H. Mussler and M. W. Shafer, Am. Ceram. Soc. Bull., 64, 1459 (1985).
  8. K. D. Keefer and T. A. Michalske, J. Am. Ceram. Soc., 70, 227 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04972.x
  9. O. Sakamoto and M. Yamane, J. Ceram. Associat., 94, 479 (1986).
  10. A. G. Evans and C. H. Charles, J. Am. Ceram. Soc., 59, 371 (1976). https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  11. S. K. Patro, M. Jhansi, A.M.S. Sudhakar Babu, S. Asief, P. R. Babu, A. M. Reddy Drug Excipient Compatibility Studies Using Thermal Methods, http://www.pharmatutor.org/articles/drug-excipient-compatibility-studies-using-thermal-methods?page=0,3 (2011).
  12. M. H. Lewis, Glass-Ceramics (Chapman and Hall, London, 1989) p. 272.
  13. H. J. Jung, Y. J. Oh, and J. K. Lee, J. Korean Ceram. Soc., 27, 256 (1990).
  14. Z. S. Ahn, W. Y. Lee, B. J. Chea, S. C. Choi, and Y. S. Park, J. Korean Association of Crystal Growth., 8, 518 (1998).
  15. R. Casasola, J. M. Rincon, and M. Romero, J. Mater. Sci., 47, 553 (2012).