DOI QR코드

DOI QR Code

Preparation of Bi0.5Na0.5TiO3-Based Multilayer Ceramic Actuators Using Microwave Sintering

마이크로파 소결법을 이용한 Bi0.5Na0.5TiO3계 적층형 세라믹 액추에이터 제조

  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 강진규 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2014.09.15
  • Accepted : 2014.10.24
  • Published : 2014.11.01

Abstract

A comparative study has been attempted for microwave and conventional sintering of lead-free $Bi_{0.5}Na_{0.5}TiO_3(BNT)$-based multilayer ceramic actuators(MLAs). It was found that microwave sintering (MWS) could be successfully applied to the co-firing of piezoceramic/AgPd MLAs with a 10 times shorter firing cycle as well as $100^{\circ}C$ lower firing temperature ($850^{\circ}C$) for sufficient densification than conventional furnace sintering ($950^{\circ}C$). Furthermore, MWS-derived specimens showed better electric field-induced strain than that of CFS-derived specimens by effectively suppressing interdiffusions between ceramic and electrode layers.

Keywords

References

  1. K. Uchino and Takahashi, Curr. Opinion Solid State Mater. Sci., 1, 698 (1996). https://doi.org/10.1016/S1359-0286(96)80054-4
  2. J. Pritchard, C. R. Bowen, and F. Lowrie, Brit. Ceram. Trans., 100, 1 (2001). https://doi.org/10.1179/096797801681116
  3. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  4. T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 111 (2007).
  5. J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  6. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, J. Appl. Phys., 113, 154102 (2013). https://doi.org/10.1063/1.4801893
  7. R. A. Malik, J. K. Kang, A. Hussain, C. W. Ahn, H. S. Han, and J. S. Lee, Appl. Phys. Expres., 7, 61502 (2014). https://doi.org/10.7567/APEX.7.061502
  8. C. S. Chen, C. C. Chou, W. C. Yang, and I. N. Lin, J. Electroceram., 13, 573 (2004). https://doi.org/10.1007/s10832-004-5160-5
  9. Y. Fang, M. T. Lanagan, D. K. Agrawal, G. Y. Yang, C. A. Randall, T. R. Shrout, A. Henderson, M. Randall, and A. Tajuddin, J. Electroceram., 15, 13 (2005). https://doi.org/10.1007/s10832-005-0374-8
  10. C. Y. Tsay, K. S. Liu, T. F. Lin, and I. N. Lin, J. Magn. Magn. Mater., 209, 189 (2000). https://doi.org/10.1016/S0304-8853(99)00684-8
  11. A. Bhaskar, B. R. Kanth, and S. R. Murthy, J. Magn. Magn. Mater., 283, 109 (2004). https://doi.org/10.1016/j.jmmm.2004.05.039
  12. C. Y. Fang, C. A. Randal, M. T. Lanagan, and D. K. Agrawal, J. Electroceram., 22, 125 (2009). https://doi.org/10.1007/s10832-008-9441-2
  13. C. Leach, N. K. Ali, D. Cupertino, and R. Freer, Mater. Sci. Eng. B, 170, 15 (2010). https://doi.org/10.1016/j.mseb.2010.02.018
  14. T. V. D. Ngoc, H. S. Han, K. J. Kim, R. A. Malik, A. Hussain, and J. S. Lee, J. Cer. Processing Res., 13, s177 (2012).
  15. J. K. Kang, D. J. Heo, V. Q. Nguyen, H. S. Han, K. K. Ahn, and J. S. Lee, J. Kor. Phys. Soc., 61, 899 (2012). https://doi.org/10.3938/jkps.61.899